148 research outputs found

    Fetal Electrocardiogram Signal Extraction by ANFIS Trained with PSO Method

    Get PDF
    Studies indicate that the primary source of distress in pregnent mothers is their concerns about fetus’s condition and health. One way to know about condition of fetus is non-invasive fetal electrocardiogram signal extraction through which the components of fetal electrocardiogram signal are extracted from a signal recorded at abdominal area of mother which is a combination of fetal and maternal electrocardiogram signal and noise source components. The purpose of this study is to propose an algorithm to boost this extraction. To this end, we decomposed electrocardiogram signal to its Intrinsic Mode Functions (IMFs) thruogh Empirical Mode Decomposition algorithm; then, we removed the last and collected the other IMFs to reconstruct electrocardiogram signal without Baseline. Afterwards, we used Particle Swarm Optimization to train and adjust the parameters of Adaptive Neuro-Fuzzy Inference System to model the path that maternal electrocardiogram signal travel to reach abdominal area. Accordingly, we were able to distinguish and remove maternal electrocardiogram signal components from the recorded signal and hence we obtained a good approximation of fetal electrocardiogram signal. We implemented our algorithm and other algorithms on simulated and real signals and found out that, in most cases, the proposed algorithm improved the extraction of fetal electrocardiogram signal.DOI:http://dx.doi.org/10.11591/ijece.v2i2.23

    Detection and Processing Techniques of FECG Signal for Fetal Monitoring

    Get PDF
    Fetal electrocardiogram (FECG) signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system

    Techniques of FECG signal analysis: detection and processing for fetal monitoring

    Get PDF
    Fetal heart rate monitoring is a technique for obtaining important information about the condition of a fetus during pregnancy and labor, by detecting the FECG signal generated by the heart of the fetus. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies is becoming a very important requirement in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature. A comparative study has been carried out to show the performance of various methods. This paper opens up a passage to biomedical researchers, physicians and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system by providing valuable information to help them in developing more dominant, flexible and resourceful application

    Nonlinear Adaptive Signal Processing Improves the Diagnostic Quality of Transabdominal Fetal Electrocardiography

    Get PDF
    The abdominal fetal electrocardiogram (fECG) conveys valuable information that can aid clinicians with the diagnosis and monitoring of a potentially at risk fetus during pregnancy and in childbirth. This chapter primarily focuses on noninvasive (external and indirect) transabdominal fECG monitoring. Even though it is the preferred monitoring method, unlike its classical invasive (internal and direct) counterpart (transvaginal monitoring), it may be contaminated by a variety of undesirable signals that deteriorate its quality and reduce its value in reliable detection of hypoxic conditions in the fetus. A stronger maternal electrocardiogram (the mECG signal) along with technical and biological artifacts constitutes the main interfering signal components that diminish the diagnostic quality of the transabdominal fECG recordings. Currently, transabdominal fECG monitoring relies solely on the determination of the fetus’ pulse or heart rate (FHR) by detecting RR intervals and does not take into account the morphology and duration of the fECG waves (P, QRS, T), intervals, and segments, which collectively convey very useful diagnostic information in adult cardiology. The main reason for the exclusion of these valuable pieces of information in the determination of the fetus’ status from clinical practice is the fact that there are no sufficiently reliable and well-proven techniques for accurate extraction of fECG signals and robust derivation of these informative features. To address this shortcoming in fetal cardiology, we focus on adaptive signal processing methods and pay particular attention to nonlinear approaches that carry great promise in improving the quality of transabdominal fECG monitoring and consequently impacting fetal cardiology in clinical practice. Our investigation and experimental results by using clinical-quality synthetic data generated by our novel fECG signal generator suggest that adaptive neuro-fuzzy inference systems could produce a significant advancement in fetal monitoring during pregnancy and childbirth. The possibility of using a single device to leverage two advanced methods of fetal monitoring, namely noninvasive cardiotocography (CTG) and ST segment analysis (STAN) simultaneously, to detect fetal hypoxic conditions is very promising

    Computational intelligence methods for predicting fetal outcomes from heart rate patterns

    Get PDF
    In this thesis, methods for evaluating the fetal state are compared to make predictions based on Cardiotocography (CTG) data. The first part of this research is the development of an algorithm to extract features from the CTG data. A feature extraction algorithm is presented that is capable of extracting most of the features in the SISPORTO software package as well as late and variable decelerations. The resulting features are used for classification based on both U.S. National Institutes of Health (NIH) categories and umbilical cord pH data. The first experiment uses the features to classify the results into three different categories suggested by the NIH and commonly being used in practice in hospitals across the United States. In addition, the algorithms developed here were used to predict cord pH levels, the actual condition that the three NIH categories are used to attempt to measure. This thesis demonstrates the importance of machine learning in Maternal and Fetal Medicine. It provides assistance for the obstetricians in assessing the state of the fetus better than the category methods, as only about 30% of the patients in the Pathological category suffer from acidosis, while the majority of acidotic babies were in the suspect category, which is considered lower risk. By predicting the direct indicator of acidosis, umbilical cord pH, this work demonstrates a methodology to achieve a more accurate prediction of fetal outcomes using Fetal Heartrate and Uterine Activity with accuracies of greater than 99.5% for predicting categories and greater than 70% for fetal acidosis based on pH values --Abstract, page iii

    Non-invasive fetal monitoring: a maternal surface ECG electrode placement-based novel approach for optimization of adaptive filter control parameters using the LMS and RLS algorithms

    Get PDF
    This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters (such as step size mu and filter order N) of LMS and RLS adaptive filters used for noninvasive fetal monitoring. The optimization algorithm is driven by considering the ECG electrode positions on the maternal body surface in improving the performance of these adaptive filters. The main criterion for optimal parameter selection was the Signal-to-Noise Ratio (SNR). We conducted experiments using signals supplied by the latest version of our LabVIEW-Based Multi-Channel Non-Invasive Abdominal Maternal-Fetal Electrocardiogram Signal Generator, which provides the flexibility and capability of modeling the principal distribution of maternal/fetal ECGs in the human body. Our novel algorithm enabled us to find the optimal settings of the adaptive filters based on maternal surface ECG electrode placements. The experimental results further confirmed the theoretical assumption that the optimal settings of these adaptive filters are dependent on the ECG electrode positions on the maternal body, and therefore, we were able to achieve far better results than without the use of optimization. These improvements in turn could lead to a more accurate detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to establish recommendations for standard electrode placement and find the optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing. Ultimately, diagnostic-grade fetal ECG signals would ensure the reliable detection of fetal hypoxia.Web of Science175art. no. 115

    Improving Maternal and Fetal Cardiac Monitoring Using Artificial Intelligence

    Get PDF
    Early diagnosis of possible risks in the physiological status of fetus and mother during pregnancy and delivery is critical and can reduce mortality and morbidity. For example, early detection of life-threatening congenital heart disease may increase survival rate and reduce morbidity while allowing parents to make informed decisions. To study cardiac function, a variety of signals are required to be collected. In practice, several heart monitoring methods, such as electrocardiogram (ECG) and photoplethysmography (PPG), are commonly performed. Although there are several methods for monitoring fetal and maternal health, research is currently underway to enhance the mobility, accuracy, automation, and noise resistance of these methods to be used extensively, even at home. Artificial Intelligence (AI) can help to design a precise and convenient monitoring system. To achieve the goals, the following objectives are defined in this research: The first step for a signal acquisition system is to obtain high-quality signals. As the first objective, a signal processing scheme is explored to improve the signal-to-noise ratio (SNR) of signals and extract the desired signal from a noisy one with negative SNR (i.e., power of noise is greater than signal). It is worth mentioning that ECG and PPG signals are sensitive to noise from a variety of sources, increasing the risk of misunderstanding and interfering with the diagnostic process. The noises typically arise from power line interference, white noise, electrode contact noise, muscle contraction, baseline wandering, instrument noise, motion artifacts, electrosurgical noise. Even a slight variation in the obtained ECG waveform can impair the understanding of the patient's heart condition and affect the treatment procedure. Recent solutions, such as adaptive and blind source separation (BSS) algorithms, still have drawbacks, such as the need for noise or desired signal model, tuning and calibration, and inefficiency when dealing with excessively noisy signals. Therefore, the final goal of this step is to develop a robust algorithm that can estimate noise, even when SNR is negative, using the BSS method and remove it based on an adaptive filter. The second objective is defined for monitoring maternal and fetal ECG. Previous methods that were non-invasive used maternal abdominal ECG (MECG) for extracting fetal ECG (FECG). These methods need to be calibrated to generalize well. In other words, for each new subject, a calibration with a trustable device is required, which makes it difficult and time-consuming. The calibration is also susceptible to errors. We explore deep learning (DL) models for domain mapping, such as Cycle-Consistent Adversarial Networks, to map MECG to fetal ECG (FECG) and vice versa. The advantages of the proposed DL method over state-of-the-art approaches, such as adaptive filters or blind source separation, are that the proposed method is generalized well on unseen subjects. Moreover, it does not need calibration and is not sensitive to the heart rate variability of mother and fetal; it can also handle low signal-to-noise ratio (SNR) conditions. Thirdly, AI-based system that can measure continuous systolic blood pressure (SBP) and diastolic blood pressure (DBP) with minimum electrode requirements is explored. The most common method of measuring blood pressure is using cuff-based equipment, which cannot monitor blood pressure continuously, requires calibration, and is difficult to use. Other solutions use a synchronized ECG and PPG combination, which is still inconvenient and challenging to synchronize. The proposed method overcomes those issues and only uses PPG signal, comparing to other solutions. Using only PPG for blood pressure is more convenient since it is only one electrode on the finger where its acquisition is more resilient against error due to movement. The fourth objective is to detect anomalies on FECG data. The requirement of thousands of manually annotated samples is a concern for state-of-the-art detection systems, especially for fetal ECG (FECG), where there are few publicly available FECG datasets annotated for each FECG beat. Therefore, we will utilize active learning and transfer-learning concept to train a FECG anomaly detection system with the least training samples and high accuracy. In this part, a model is trained for detecting ECG anomalies in adults. Later this model is trained to detect anomalies on FECG. We only select more influential samples from the training set for training, which leads to training with the least effort. Because of physician shortages and rural geography, pregnant women's ability to get prenatal care might be improved through remote monitoring, especially when access to prenatal care is limited. Increased compliance with prenatal treatment and linked care amongst various providers are two possible benefits of remote monitoring. If recorded signals are transmitted correctly, maternal and fetal remote monitoring can be effective. Therefore, the last objective is to design a compression algorithm that can compress signals (like ECG) with a higher ratio than state-of-the-art and perform decompression fast without distortion. The proposed compression is fast thanks to the time domain B-Spline approach, and compressed data can be used for visualization and monitoring without decompression owing to the B-spline properties. Moreover, the stochastic optimization is designed to retain the signal quality and does not distort signal for diagnosis purposes while having a high compression ratio. In summary, components for creating an end-to-end system for day-to-day maternal and fetal cardiac monitoring can be envisioned as a mix of all tasks listed above. PPG and ECG recorded from the mother can be denoised using deconvolution strategy. Then, compression can be employed for transmitting signal. The trained CycleGAN model can be used for extracting FECG from MECG. Then, trained model using active transfer learning can detect anomaly on both MECG and FECG. Simultaneously, maternal BP is retrieved from the PPG signal. This information can be used for monitoring the cardiac status of mother and fetus, and also can be used for filling reports such as partogram

    N on - Invasive Feto - Maternal Well - Being Monitoring: A Review of Methods

    Get PDF

    Predicting complex system behavior using hybrid modeling and computational intelligence

    Get PDF
    “Modeling and prediction of complex systems is a challenging problem due to the sub-system interactions and dependencies. This research examines combining various computational intelligence algorithms and modeling techniques to provide insights into these complex processes and allow for better decision making. This hybrid methodology provided additional capabilities to analyze and predict the overall system behavior where a single model cannot be used to understand the complex problem. The systems analyzed here are flooding events and fetal health care. The impact of floods on road infrastructure is investigated using graph theory, agent-based traffic simulation, and Long Short-Term Memory deep learning to predict water level rise from river gauge height. Combined with existing infrastructure models, these techniques provide a 15-minute interval for making closure decisions rather than the current 6-hour interval. The second system explored is fetal monitoring, which is essential to diagnose severe fetal conditions such as acidosis. Support Vector Machine and Random Forest were compared to identify the best model for classification of fetal state. This model provided a more accurate classification than existing research on the CTG. A deep learning forecasting model was developed to predict the future values for fetal heart rate and uterine contractions. The forecasting and classification algorithms are then integrated to evaluate the future condition of the fetus. The final model can predict the fetal state 4 minutes ahead to help the obstetricians to plan necessary interventions for preventing acidosis and asphyxiation. In both cases, time series predictions using hybrid modeling provided superior results to existing methods to predict complex behaviors”--Abstract, page iv
    corecore