2,478 research outputs found

    A multiobjective credibilistic portfolio selection model. Empirical study in the Latin American Integrated Market

    Full text link
    [EN] This paper extends the stochastic mean-semivariance model to a fuzzy multiobjective model, where apart from return and risk, also liquidity is considered to measure the performance of a portfolio. Uncertainty of future return and liquidity of each asset are modeled using L-R type fuzzy numbers that belong to the power reference function family. The decision process of this novel approach takes into account not only the multidimensional nature of the portfolio selection problem but also realistic constraints by investors. Particularly, it optimizes the expected return, the semivariance and the expected liquidity of a given portfolio, considering cardinality constraint and upper and lower bound constraints. The constrained portfolio optimization problem resulting is solved using the algorithm NSGA-II. As a novelty, in order to select the optimal portfolio, this study defines the credibilistic Sortino ratio as the ratio between the credibilistic risk premium and the credibilistic semivariance. An empirical study is included to show the effectiveness and efficiency of the model in practical applications using a data set of assets from the Latin American Integrated Market.García García, F.; Gonzalez-Bueno, J.; Guijarro, F.; Oliver-Muncharaz, J. (2020). A multiobjective credibilistic portfolio selection model. Empirical study in the Latin American Integrated Market. Enterpreneurship and Sustainability Issues. 8(2):1027-1046. https://doi.org/10.9770/jesi.2020.8.2(62)S102710468

    Self-adaptive MOEA feature selection for classification of bankruptcy prediction data

    Get PDF
    Article ID 314728Bankruptcy prediction is a vast area of finance and accounting whose importance lies in the relevance for creditors and investors in evaluating the likelihood of getting into bankrupt. As companies become complex, they develop sophisticated schemes to hide their real situation. In turn, making an estimation of the credit risks associated with counterparts or predicting bankruptcy becomes harder. Evolutionary algorithms have shown to be an excellent tool to deal with complex problems in finances and economics where a large number of irrelevant features are involved.This paper provides a methodology for feature selection in classification of bankruptcy data sets using an evolutionary multiobjective approach that simultaneously minimise the number of features and maximise the classifier quality measure (e.g., accuracy).The proposed methodology makes use of self-adaptation by applying the feature selection algorithm while simultaneously optimising the parameters of the classifier used. The methodology was applied to four different sets of data. The obtained results showed the utility of using the self-adaptation of the classifier.This work was partially supported by the Portuguese Foundation for Science and Technology under Grant PEst-C/CTM/LA0025/2011 (Strategic Project-LA 25-2011-2012) and by the Spanish Ministerio de Ciencia e Innovacion, under the project "Gestion de movilidad efficiente y sostenible, MOVES" with Grant Reference TIN2011-28336

    Interval-valued upside potential and downside risk portfolio optimisation

    Get PDF
    A novel interval optimisation approach is developed to include imprecise forecasts into the portfolio selection process for investors measuring upside potential and downside risk as deviations from a target return. Crisp scenarios are substituted by interval scenarios and the resulting interval optimisation problem is solved in a tractable manner by means of a bi-objective formulation exploiting a partial order relation between intervals. Four utility case studies involving assets from the F.T.S.E. M.I.B. Index are considered to illustrate how impreciseness can be efficiently handled in portfolio management
    corecore