1,967 research outputs found

    Recent Progress on Mechanical Condition Monitoring and Fault Diagnosis

    Get PDF
    AbstractMechanical equipments are widely used in various industrial applications. Generally working in severe conditions, mechanical equipments are subjected to progressive deterioration of their state. The mechanical failures account for more than 60% of breakdowns of the system. Therefore, the identification of impending mechanical fault is crucial to prevent the system from malfunction. This paper discusses the most recent progress in the mechanical condition monitoring and fault diagnosis. Excellent work is introduced from the aspects of the fault mechanism research, signal processing and feature extraction, fault reasoning research and equipment development. An overview of some of the existing methods for signal processing and feature extraction is presented. The advantages and disadvantages of these techniques are discussed. The review result suggests that the intelligent information fusion based mechanical fault diagnosis expert system with self-learning and self-updating abilities is the future research trend for the condition monitoring fault diagnosis of mechanical equipments

    Pembangunan model penentuan keperluan perumahan kajian kes: Johor Bahru, Malaysia

    Get PDF
    Perumahan merupakan satu komponen penting dalam pembangunan ekonomi di mana ia telah menjadi dasar kerajaan untuk menyediakan rumah bagi setiap rakyat. Rancangan Malaysia terdahulu telah cuba merancang bagi merealisasikan dasar ini. Walaupun anggaran keperluan perumahan dibuat di bawah Rancangan Malaysia, namun anggaran tersebut tidak membayangkan keperluan sebenar pembeli dan penyewa rumah di Malaysia. Negara-negara maju telah menggunakan pelbagai model dalam menentukan keperluan perumahan. Namun begitu, model-model tersebut tidak sesuai digunakan di Malaysia kerana data yang terhad. Kajian ini memfokuskan kepada dua objektif iaitu, mengenal pasti model dan faktor yang signifikan bagi menentukan keperluan perumahan, dan kedua menghasilkan model penentuan keperluan perumahan di Malaysia. Skop kajian ini tertumpu kepada pembeli dan penyewa rumah di Daerah Johor Bahru yang dipilih melalui kaedah pesampelan kelompok pelbagai peringkat. Data diperolehi melalui borang kaji selidik dan dianalisis menggunakan pendekatan kuantitatif. Analisis statistik deskriptif digunakan bagi menghuraikan taburan kekerapan, peratus, min, dan sisihan piawai manakala statistik inferensi iaitu ujian Korelasi Pearson dan Regresi Pelbagai digunakan untuk pembentukan model. Dengan menggunakan kaedah Enter, satu model yang signifikan dapat dihasilkan (F4,178 = 353.699 p < 0.05. Adjusted R square = .886) yang signifikan terhadap dua faktor utama iaitu demografi dan kemampuan. Model yang dihasilkan bagi kajian ini adalah General Linear Model. Model ini dapat digunakan bagi menentukan keperluan perumahan di Johor Bahru. Ia juga berfungsi sebagai alat penting dalam perancangan sektor perumahan pada masa hadapan di Malaysia

    Generative Adversarial Networks Selection Approach for Extremely Imbalanced Fault Diagnosis of Reciprocating Machinery

    Get PDF
    At present, countless approaches to fault diagnosis in reciprocating machines have been proposed, all considering that the available machinery dataset is in equal proportions for all conditions. However, when the application is closer to reality, the problem of data imbalance is increasingly evident. In this paper, we propose a method for the creation of diagnoses that consider an extreme imbalance in the available data. Our approach first processes the vibration signals of the machine using a wavelet packet transform-based feature-extraction stage. Then, improved generative models are obtained with a dissimilarity-based model selection to artificially balance the dataset. Finally, a Random Forest classifier is created to address the diagnostic task. This methodology provides a considerable improvement with 99% of data imbalance over other approaches reported in the literature, showing performance similar to that obtained with a balanced set of data.National Natural Science Foundation of China, under Grant 51605406National Natural Science Foundation of China under Grant 7180104

    Observer-biased bearing condition monitoring: from fault detection to multi-fault classification

    Get PDF
    Bearings are simultaneously a fundamental component and one of the principal causes of failure in rotary machinery. The work focuses on the employment of fuzzy clustering for bearing condition monitoring, i.e., fault detection and classification. The output of a clustering algorithm is a data partition (a set of clusters) which is merely a hypothesis on the structure of the data. This hypothesis requires validation by domain experts. In general, clustering algorithms allow a limited usage of domain knowledge on the cluster formation process. In this study, a novel method allowing for interactive clustering in bearing fault diagnosis is proposed. The method resorts to shrinkage to generalize an otherwise unbiased clustering algorithm into a biased one. In this way, the method provides a natural and intuitive way to control the cluster formation process, allowing for the employment of domain knowledge to guiding it. The domain expert can select a desirable level of granularity ranging from fault detection to classification of a variable number of faults and can select a specific region of the feature space for detailed analysis. Moreover, experimental results under realistic conditions show that the adopted algorithm outperforms the corresponding unbiased algorithm (fuzzy c-means) which is being widely used in this type of problems. (C) 2016 Elsevier Ltd. All rights reserved.Grant number: 145602

    Bearing Fault Diagnosis Using Information Fusion and Intelligent Algorithms

    Get PDF

    Support vector machine based classification in condition monitoring of induction motors

    Get PDF
    Continuous and trouble-free operation of induction motors is an essential part of modern power and production plants. Faults and failures of electrical machinery may cause remarkable economical losses but also highly dangerous situations. In addition to analytical and knowledge-based models, application of data-based models has established a firm position in the induction motor fault diagnostics during the last decade. For example, pattern recognition with Neural Networks (NN) is widely studied. Support Vector Machine (SVM) is a novel machine learning method introduced in early 90's. It is based on the statistical learning theory presented by V.N. Vapnik, and it has been successfully applied to numerous classification and pattern recognition problems such as text categorization, image recognition and bioinformatics. SVM based classifier is built to minimize the structural misclassification risk, whereas conventional classification techniques often apply minimization of the empirical risk. Therefore, SVM is claimed to lead enhanced generalisation properties. Further, application of SVM results in the global solution for a classification problem. Thirdly, SVM based classification is attractive, because its efficiency does not directly depend on the dimension of classified entities. This property is very useful in fault diagnostics, because the number of fault classification features does not have to be drastically limited. However, SVM has not yet been widely studied in the area of fault diagnostics. Specifically, in the condition monitoring of induction motor, it does not seem to have been considered before this research. In this thesis, a SVM based classification scheme is designed for different tasks in induction motor fault diagnostics and for partial discharge analysis of insulation condition monitoring. Several variables are compared as fault indicators, and forces on rotor are found to be important in fault detection instead of motor current that is currently widely studied. The measurement of forces is difficult, but easily measurable vibrations are directly related to the forces. Hence, vibration monitoring is considered in more detail as the medium for the motor fault diagnostics. SVM classifiers are essentially 2-class classifiers. In addition to the induction motor fault diagnostics, the results of this thesis cover various methods for coupling SVMs for carrying out a multi-class classification problem.reviewe

    Survey on Neuro-Fuzzy systems and their applications in technical diagnostics and measurement

    Get PDF
    Both fuzzy logic, as the basis of many inference systems, and Neural Networks, as a powerful computational model for classification and estimation, have been used in many application fields since their birth. These two techniques are somewhat supplementary to each other in a way that what one is lacking of the other can provide. This led to the creation of Neuro-Fuzzy systems which utilize fuzzy logic to construct a complex model by extending the capabilities of Artificial Neural Networks. Generally speaking all type of systems that integrate these two techniques can be called Neuro-Fuzzy systems. Key feature of these systems is that they use input-output patterns to adjust the fuzzy sets and rules inside the model. The paper reviews the principles of a Neuro-Fuzzy system and the key methods presented in this field, furthermore provides survey on their applications for technical diagnostics and measurement. © 2015 Elsevier Ltd
    corecore