461 research outputs found

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Proceedings of International Building & Infrastructure Technology Conference 2011

    Get PDF

    A consensus-based approach for structural resilience to earthquakes using machine learning techniques

    Get PDF
    Seismic hazards represent a constant threat for both the built environment but mainly for human lives. Past approaches to seismic engineering considered the building deformability as limited to the elastic behaviour. Following to the introduction of performance-based approaches a whole new methodology for seismic design and assessment was proposed, relying on the ability of a building to extend its deformability in the plastic domain. This links to the ability of the building to undergo large deformations but still withstand it and therefore safeguard human lives. This allowed to distinguish between transient and permanent deformations when undergoing dynamic (e.g., seismic) stresses. In parallel, a whole new discipline is flourishing, which sees traditional structural analysis methods coupled to Artificial Intelligence (AI) strategies. In parallel, the emerging discipline of resilience has been widely implemented in the domain of disaster management and also in structural engineering. However, grounding on an extensive literature review, current approaches to disaster management at the building and district level exhibit a significant fragmentation in terms of strategies of objectives, highlighting the urge for a more holistic conceptualization. The proposed methodology therefore aims at addressing both the building and district levels, by the adoption of scale-specific methodologies suitable for the scale of analysis. At the building level, an analytical three-stage methodology is proposed to enhance traditional investigation and structural optimization strategies by the utilization of object-oriented programming, evolutionary computing and deep learning techniques. This is validated throughout the application of the proposed methodology on a real building in Old Beichuan, which underwent seismically-triggered damages as a result of the 2008 Wenchuan Earthquake. At the district scale, a so-called qualitative methodology is proposed to attain a resilience evaluation in face of geo-environmental hazards and specifically targeting the built environment. A Delphi expert consultation is adopted and a framework is presented. To combine the two scales, a high-level strategy is ultimately proposed in order to interlace the building and district-scale simulations to make them organically interlinked. To this respect, a multi-dimensional mapping of the area of Old-Beichuan is presented to aid the identification of some key indicators of the district-level framework. The research has been conducted in the context of the REACH project, `vi investigating the built environment’s resilience in face of seismically-triggered geo-environmental hazards in the context of the 2008 Wenchuan Earthquake in China. Results show that an optimized performance-based approach would significantly enhance traditional analysis and investigation strategies, providing an approximate damage reduction of 25% with a cost increase of 20%. In addition, the utilization of deep learning techniques to replace traditional simulation engine proved to attain a result precision up to 98%, making it reliable to conduct investigation campaign in relation to specific building features when traditional methods fail due to the impossibility of either accessing the building or tracing pertinent documentation. It is therefore demonstrated how sometimes challenging regulatory frameworks is a necessary step to enhance the resilience of buildings in face of seismic hazards

    An Investigation on Benefit-Cost Analysis of Greenhouse Structures in Antalya

    Get PDF
    Significant population increase across the world, loss of cultivable land and increasing demand for food put pressure on agriculture. To meet the demand, greenhouses are built, which are, light structures with transparent cladding material in order to provide controlled microclimatic environment proper for plant production. Conceptually, greenhouses are similar with manufacturing buildings where a controlled environment for manufacturing and production have been provided and proper spaces for standardized production processes have been enabled. Parallel with the trends in the world, particularly in southern regions, greenhouse structures have been increasingly constructed and operated in Turkey. A significant number of greenhouses are located at Antalya. The satellite images demonstrated that for over last three decades, there has been a continuous invasion of greenhouses on all cultivable land. There are various researches and attempts for the improvement of greenhouse design and for increasing food production by decreasing required energy consumption. However, the majority of greenhouses in Turkey are very rudimentary structures where capital required for investment is low, but maintenance requirements are high when compared with new generation greenhouse structures. In this research paper, life-long capital requirements for construction and operation of greenhouse buildings in Antalya has been investigated by using benefit-cost analysis study

    Knowledge Capturing in Design Briefing Process for Requirement Elicitation and Validation

    Get PDF
    Knowledge capturing and reusing are major processes of knowledge management that deal with the elicitation of valuable knowledge via some techniques and methods for use in actual and further studies, projects, services, or products. The construction industry, as well, adopts and uses some of these concepts to improve various construction processes and stages. From pre-design to building delivery knowledge management principles and briefing frameworks have been implemented across project stakeholders: client, design teams, construction teams, consultants, and facility management teams. At pre-design and design stages, understanding the client’s needs and users’ knowledge are crucial for identifying and articulating the expected requirements and objectives. Due to underperforming results and missed goals and objectives, many projects finish with highly dissatisfied clients and loss of contracts for some organizations. Knowledge capturing has beneficial effects via its principles and methods on requirement elicitation and validation at the briefing stage between user, client and designer. This paper presents the importance and usage of knowledge capturing and reusing in briefing process at pre-design and design stages especially the involvement of client and user, and explores the techniques and technologies that are usable in briefing process for requirement elicitation
    corecore