40,626 research outputs found

    A demand model with departure time choice for within-day dynamic traffic assignment

    Get PDF
    A within-clay dynamic demand model is formulated, embodying, in addition to the classic generation, distribution and modal split stages, an actual demand model taking into account departure time choice. The work focuses on this last stage, represented through an extension of the discrete choice framework to a continuous choice set. The dynamic multimodal supply and equilibrium model based on implicit path enumeration, which have been developed in previous work are outlined here, to define within-day dynamic elastic demand stochastic multimodal equilibrium as a fixed point problem on users flows and transit line frequencies. A MSA algorithm capable, in the case of Logit route choice models, of supplying equilibrium flows and frequencies on real dimension networks, is presented, as well as the specific procedures implementing the departure time choice and actual demand models. Finally, the results obtained on a test network are presented and conclusions are drawn. (c) 2005 Elsevier B.V. All rights reserved

    Transport user benefits calculation with the “Rule of a Half” for travel demand models with constraints

    Get PDF
    The importance of user benefits in transport projects assessments is well-known by transport planners and economists. Generally they have the greatest impact on the result of costbenefit analysis. It is common practice to adopt the consumer surplus measure for calculating transport user benefits. Normally the well-known “Rule of a Half”, as a practical approximation for the integral of the demand curve, is used to determine the change of consumer surplus. In this paper we enter into the question of whether the Rule of a Half is valid in the case of travel demand models with multiple constraints. Such models are often used for travel demand modeling of large-scale areas. The most discussed and well-known model in transport modeling field is the doubly constrained gravity model. Beside this model with inelastic constraints there are also more flexible models with elastic constraints. The theoretical analysis in this paper provides a mathematical proof for the validity of the concept of the Rule of a Half for travel demand models with multiple elastic and inelastic constraints. In this case the Rule of a Half is also a correct approximation of the change of consumer surplus

    Modelling public transport accessibility with Monte Carlo stochastic simulations: A case study of Ostrava

    Get PDF
    Activity-based micro-scale simulation models for transport modelling provide better evaluations of public transport accessibility, enabling researchers to overcome the shortage of reliable real-world data. Current simulation systems face simplifications of personal behaviour, zonal patterns, non-optimisation of public transport trips (choice of the fastest option only), and do not work with real targets and their characteristics. The new TRAMsim system uses a Monte Carlo approach, which evaluates all possible public transport and walking origin-destination (O-D) trips for k-nearest stops within a given time interval, and selects appropriate variants according to the expected scenarios and parameters derived from local surveys. For the city of Ostrava, Czechia, two commuting models were compared based on simulated movements to reach (a) randomly selected large employers and (b) proportionally selected employers using an appropriate distance-decay impedance function derived from various combinations of conditions. The validation of these models confirms the relevance of the proportional gravity-based model. Multidimensional evaluation of the potential accessibility of employers elucidates issues in several localities, including a high number of transfers, high total commuting time, low variety of accessible employers and high pedestrian mode usage. The transport accessibility evaluation based on synthetic trips offers an improved understanding of local situations and helps to assess the impact of planned changes.Web of Science1124art. no. 709

    Agent-based modelling of air transport demand

    Get PDF
    Constraints such as opening hours or passenger capacities influence travel options that can be offered by an airport and by the connecting airlines. If infrastructure, policy or technological measures modify transport options, then the benefits do not only depend on the technology, but also on possibly heterogeneous user preferences such as desired arrival times or on the availability of alternative travel modes. This paper proposes an agent-based, iterative assignment procedure to model European air traffic and German passenger demand on a microscopic level, capturing individual passenger preferences. Air transport technology is simulated microscopically, i.e. each aircraft is represented as single unit with attached attributes such as departure time, flight duration or seat availability. Trip-chaining and delay propagation can be added. Microsimulation is used to verify and assess passengers’ choices of travel alternatives, where those choices improve over iterations until an agent-based stochastic user equilibrium is reached. This requires fast simulation models, thus, similar to other approaches in air traffic modelling a queue model is used. In contrast to those approaches, the queue model in this work is solved algorithmically. Overall, the approach is suited to analyze, forecast and evaluate the consequences of mid-distance transport measures

    Estimation of aggregated modal split mode

    Get PDF
    In spite of the fact that disaggregate modelling has undergone considerable development in the last twenty years, many studies are still based on aggregate modelling. In France, for example, aggregate models are still in much more common use than disaggregate models, even for modal split. The estimation of aggregate models is still therefore an important issue.In France, for most studies it is possible to use behavioural data from household surveys, which are conducted every ten years in most French conurbations. These household surveys provide data on the socioeconomic characteristics both of individuals and the households to which they belong and data on modal choice for all the trips made the day before the survey. The sampling rate is generally of 1% of the population, which gives about 50,000 trips for a conurbation of 1 million inhabitants. However, matrices that contain several hundred rows and columns are frequently used. We therefore have to construct several modal matrices that contain more than 10,000 cells (in the case of a small matrix with only 100 rows) with less than 50,000 trips (to take the above example). Obviously, the matrices will contain a large number of empty cells and the precision of almost all the cells will be very low. It is consequently not possible to estimate the model at this level of zoning.The solution which is generally chosen is to aggregate zones. This must comply with two contradictory objectives:- the number of zones must be as small as possible in order to increase the number of surveyed trips that can be used during estimation and hence the accuracy of the O-D matrices for trips conducted on each mode;- the zones must be as small as possible in order to produce accurate data for the explanatory variables such as the generalized cost for each of the transport modes considered. When the size of the zone increases, it is more difficult to evaluate the access and regress time for public transport and there are several alternative routes with different travel times between each origin zone and each destination. Therefore more uncertainty is associated with the generalized cost that represents the quality of service available between the two zones. The generally adopted solution is to produce a weighted average of all the generalized costs computed from the most disaggregated matrix. However, there is no guarantee that this weighted mean will be accurate for the origin-destination pair in question.When the best compromise has been made, some of the matrix cells are generally empty or suffer from an insufficient level of precision. To deal with this problem we generally keep only the cells for which the data is sufficiently precise by selecting those cells in which the number of surveyed trips exceeds a certain threshold. However, this process involves rejecting part of the data which cannot be used for estimation purposes. When a fairly large number of zones is used, the origin destination pairs which are selected for the estimation of the model mainly involve trips that are performed in the centre of the conurbation or radial trips between the centre and the suburbs. These origin-destination pairs are also those for which public transport's share is generally the highest. The result is to reduce the variance of the data and therefore the quality of the estimation.To cope with this problem we propose a different aggregation process which makes it possible to retain all the trips and use a more disaggregate zoning system. The principle of the method is very simple. We shall apply the method to the model most commonly used for modal split, which is the logit model. When there are only two modes of transport, the share of each mode is obtained directly from the difference in the utility between the two modes with the logit function. We can therefore aggregate the origin-destination pairs for which the difference between the utility of the two modes is very small in order to obtain enough surveyed trips to ensure sufficient data accuracy. This process is justified by the fact that generally the data used to calculate the utility of each mode is as accurate or even more accurate at a more disaggregate level of zoning. The problem with this method is that the utility function coefficients have to be estimated at the same time as the logit model. An iterative process is therefore necessary. The steps of the method are summarised below:- selection of initialization values for the utility function coefficients for the two transport modes in order to intitialize the iteration process. These values can, for example, be obtained from a previous study or calibration performed according to the classical method described in Section 1.2;- the utility for each mode is computed on the basis of the above coefficients, followed by the difference in the utility for each O-D pair in the smallest scale zoning system for which explanatory variables with an adequate level of accuracy are available (therefore with very limited zonal aggregation or even none at all);- the O-D pairs are classified on the basis of increasing utility difference;- the O-D pairs are then aggregated. This is done on the basis of closeness of utility difference. The method involves taking the O-D link with the smallest utility difference then combining it with the next O-D pair (in order of increasing utility difference). This process is continued until the number of surveyed trips in the grouping is greater than a threshold value that is decided on the basis of the level of accuracy that is required for trip flow estimation. When this threshold is reached the construction of the second grouping is commenced, and so on and so forth until each O-D pair has been assigned to a group;- for each new class of O-D pairs it is necessary to compute the values of the explanatory variables which make up the utility functions for each class. This value is obtained on the basis of the weighted average of the values for each O-D pair in the class;- a new estimation of the utility function coefficients.This process is repeated until the values of the utility function coefficients converge. We have tested this method for the Lyon conurbation with data from the most recent household travel survey conducted in 1995/96. We have conducted a variety of tests in order to identify the best application of the method and to test the stability of the results. It would seem that this method always produces better results than the more traditional method that involves zoning aggregation. The paper presents both the methodology and the results obtained from different aggregation methods. In particular, we analyse how the choice of zoning system affects the results of the estimation.Aggregate modelling ; choice modal ; Zoning system ; Urban mobility ; Conurbation (Lyon, France) ; Estimation method

    Modelling departure time and mode choice

    Get PDF
    As a result of increasing road congestion and road pricing, modelling the temporal response of travellers to transport policy interventions has rapidly emerged as a major issue in many practical transport planning studies. A substantial body of research is therefore being carried out to understand the complexities involved in modelling time of day choice. These models are contributing substantially to our understanding of how travellers make time-of-day decisions (Hess et al, 2004; de Jong et al, 2003). These models, however, tend to be far too complex and far too data intensive to be of use for application in large-scale modelling forecasting systems, where socio-economic detail is limited and detailed scheduling information is rarely available. Moreover, model systems making use of the some of the latest analytical structures, such as Mixed Logit, are generally inapplicable in practical planning, since they rely on computer-intensive simulation in application just as well as in estimation. The aim of this paper, therefore, is to describe the development of time-period choice models which are suitable for application in large-scale modelling forecasting systems. Large-scale practical planning models often rely on systems of nested logit models, which can incorporate many of the most important interactions that are present in the complex models but which have low enough run-times to allow them to be used for practical planning. In these systems, temporal choice is represented as the choice between a finite set of discrete alternatives, represented by mutually exclusive time-periods that are obtained by aggregation of the actual observed continuous time values. The issues that face modellers are then: -how should the time periods be defined, and in particular how long should they be? -how should the choices of time periods be related to each other, e.g. is the elasticity for shorter shifts greater than for longer shifts? -how should time period choice be placed in the model system relative to other choices, such as that of the mode of travel? These questions cannot be answered on a purely theoretical basis but require the analysis of empirical data. However, there is not a great deal of data available on the relevant choices. The time period models described in the paper are developed from three related stated preference (SP) studies undertaken over the past decade in the United Kingdom and the Netherlands. Because of the complications involved with using advanced models in large-scale modelling forecasting systems, the model structures are limited to nested logit models. Two different tree structures are explored in the analysis, nesting mode above time period choice or time period choice above mode. The analysis examines how these structures differ by data set, purpose of travel and time period specification. Three time period specifications were tested, dividing the 24-hour day into: -twenty-four 1-hour periods; -five coarse time-periods; -sixteen 15-minute morning-peak periods, and two coarse pre-peak and post-peak periods. In each case, the time periods are used to define both the outbound and the return trip timings. The analysis shows that, with a few exceptions, the nested models outperform the basic Multinomial Logit structures, which operate under the assumption of equal substitution patterns across alternatives. With a single exception, the nested models in turn show higher substitution between alternative time periods than between alternative modes, showing that, for all the time period lengths studied, travellers are more sensitive to transport levels of service in their choice of departure time than in choice of mode. The advantages of the nesting structures are especially pronounced in the 1-hour and 15-minute models, while, in the coarse time-period models, the MNL model often remains the preferred structure; this is a clear effect of the broader time-periods, and the consequently lower substitution between time-periods.

    The logsum as an evaluation measure - review of the literature and new results

    Get PDF
    Transport infrastructure projects in The Netherlands are appraised ex ante by using cost-benefit analysis (CBA) procedures following the so-called ‘OEI-guidelines’. The project benefits for travellers are incorporated in the form of changes in demand (e.g. from the Dutch national model system, LMS, or the regional models, NRM) and changes in the generalised travel costs (using values of time from Stated Preference studies to monetise travel time savings), and applying the rule of half. While a number of short-term improvements to the current procedures have been improved, it is also interesting to consider a more radical approach using explicit measures of consumer surplus, obtained by integrating the demand models directly. These measures are called logsums, from their functional form. The advantages that the logsums would give to the appraisal procedure would be that logsums can incorporate a degree of heterogeneity in the population, while also being theoretically more correct and in many cases easier to calculate. In this context, the Transport Research Centre (AVV) of the Dutch Ministry of Transport, Public Works and Water Management has commissioned RAND Europe to undertake a study comparing the conventional approach to the use of the logsum change as a measure of the change in consumer surplus that would result from a transport infrastructure project. The paper is based on the work conducted in the study. The paper opens with a review of the literature on the use of logsums as a measure of consumer surplus change in project appraisal and evaluation. It then goes on to describe a case study with the Dutch National Model System (LMS) for transport in which three methods are compared for a specific project (a high speed magnetic hover train that would connect the four main cities in the Randstad: Amsterdam, The Hague, Rotterdam and Utrecht): a.the ‘classical’ CBA approach as described above, b.the improved ‘classical’ CBA approach (introducing a number of short-term improvements) and c.the logsum approach (as a long term improvement). The direct effects of a particular policy on the travellers can be measured as the change in consumer surplus that results from that policy (there can also be indirect and external effects that may not be covered in the consumer surplus change). The consumer surplus associated with a set of alternatives is, under the logit assumptions, relatively easy to calculate. By definition, a person’s consumer surplus is the utility, in money terms, that a person receives in the choice situation. If the unobserved component of utility is independently and identically distributed extreme value and utility is linear in income, then the expected utility becomes the log of the denominator of a logit choice probability, divided by the marginal utility of income, plus arbitrary constants. This if often called the ‘logsum’. Total consumer surplus in the population can be calculated as a weighted sum of logsums over a sample of decision-makers, with the weights reflecting the number of people in the population who face the same representative utilities as the sampled person. The change in consumer surplus is calculated as the difference between the logsum under the conditions before the change and after the change (e.g. introduction of a policy). The arbitrary constants drop out. However, to calculate this change in consumer surplus, the researcher must know the marginal utility of income. Usually a price or cost variable enters the representative utility and, in case that happens in a consistent linear additive fashion, the negative of its coefficient is the marginal utility of income by definition. If the marginal utility of income is not constant with respect to income, as is the case in the LMS and NRM, a far more complex formula is needed, or an indirect approach has to be taken. This paper will review the theoretical literature on the use of the logsum as an evaluation measure, including both the original papers on this from the seventies and the work on the income effect in the nineties. Also recent application studies that used the logsum for evaluation purposes will be reviewed. Finally outcomes of runs with the LMS will be reported for the three different approaches (including the logsum approach) mentioned above for evaluating direct effect of transport policies and projects. Different methods for monetising the logsum change will be compared.
    • 

    corecore