50 research outputs found

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Using 3D sound for providing 3D interaction in virtual environment

    Get PDF
    In this paper we describe a proposal based on the use of 3D sound metaphors for providing precise spatial cueing in virtual environment. A 3D sound metaphor is a combination of the audio spatialization and audio cueing techniques. The 3D sound metaphors are supposed to improve the user performance and perception. The interest of this kind of stimulation mechanism is that it could allow providing efficient 3D interaction for interactive tasks such as selection, manipulation and navigation among others. We describe the main related concepts, the most relevant related work, the current theoretical and technical problems, the description of our approach, our scientific objectives, our methodology and our research perspectives

    Personality and cognitive factors in the assessment of multimodal stimuli in immersive virtual environments

    Get PDF
    Literature in the study of human response to immersive virtual reality systems often deals with the phenomenon of presence. It can be shown that audio and imagery with spatial information can interact to affect presence in users of immersive virtual reality. It has also been shown that there is variation between individuals in the experience of presence in VR. The relationship between these effects has hitherto not been fully explored. This thesis aims to identify and evaluate the relation- ships between spatial audio rendering and spatial relationships between audio and visual objects and cognitive and personality differences which account for variation in the experience of presence in VR with spatial audio. This thesis compares mea- sures of audiovisual quality of experience with an existing model of presence in a factor-analytical paradigm. Scores on these dimensions were compared between en- vironments which are similar or dissimilar to pre-exposure conditions and compared between when participants believed they were listening to real-world or headphone rendered audio events. Differences between audiovisual treatments, including au- dio rendering methods and audiovisual spatial relationships, were compared with differences attributed to cognitive and personality factors identified as significant predictors using hierarchical modelling. It was found that audiovisual quality of experience relates to subscales of presence by being independent of reported visual realism and involvement, but combines linearly with these factors to contribute to ’spatial presence’, a dimension of overall presence which is identified as the largest component in the construct. It was also found that, although manipulation of the spatial information content of audiovisual stimuli was a predictor of audiovisual quality of experience, this effect is overshadowed by inter-participant variation. In- teractive effects between extraversion, empathy, ease of resolving visual detail, and systematisation and are better predictors of quality of experience and spatial pres- ence than the changes to spatial information content investigated in this work. An- choring biases are also identified which suggest that novel environments are rated higher on audiovisual quality than those geometrically similar to the pre-exposure environment. These findings constitute support for a novel framework for assessing propensity for presence in terms of an information-processing model
    corecore