34,932 research outputs found

    Two-level systems: exact solutions and underlying pseudo-supersymmetry

    Get PDF
    Chains of first-order SUSY transformations for the spin equation are studied in detail. It is shown that the transformation chains are related with a olynomial pseudo-supersymmetry of the system. Simple determinant formulas for the final Hamiltonian of a chain and for solutions of the spin equation are derived. Applications are intended for a two-level atom in an electromagnetic field with a possible time-dependence of the field frequency. For a specific form of this dependence, the time oscillations of the probability to populate the excited level disappear. Under certain conditions this probability becomes a function tending monotonously to a constant value which can exceed 1/2.Comment: to be published in Ann. Phys. (NY), 6 figures, 17 page

    Accelerating the Fourier split operator method via graphics processing units

    Full text link
    Current generations of graphics processing units have turned into highly parallel devices with general computing capabilities. Thus, graphics processing units may be utilized, for example, to solve time dependent partial differential equations by the Fourier split operator method. In this contribution, we demonstrate that graphics processing units are capable to calculate fast Fourier transforms much more efficiently than traditional central processing units. Thus, graphics processing units render efficient implementations of the Fourier split operator method possible. Performance gains of more than an order of magnitude as compared to implementations for traditional central processing units are reached in the solution of the time dependent Schr\"odinger equation and the time dependent Dirac equation

    Detection of Buried Inhomogeneous Elliptic Cylinders by a Memetic Algorithm

    Get PDF
    The application of a global optimization procedure to the detection of buried inhomogeneities is studied in the present paper. The object inhomogeneities are schematized as multilayer infinite dielectric cylinders with elliptic cross sections. An efficient recursive analytical procedure is used for the forward scattering computation. A functional is constructed in which the field is expressed in series solution of Mathieu functions. Starting by the input scattered data, the iterative minimization of the functional is performed by a new optimization method called memetic algorithm. (c) 2003 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works
    • …
    corecore