927 research outputs found

    Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

    Get PDF
    The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas–liquid flow regimes objectively with the gas–liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of '1-of-C coding method for classification' was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the success of a clamp-on ultrasound sensor for flow regime classification that would be possible in industry practice. It is considerably more promising than other techniques as it uses a non-invasive and non-radioactive sensor

    Comparison of file sanitization techniques in usb based on average file entropy valves

    Get PDF
    Nowadays, the technology has become so advanced that many electronic gadgets are in every household today. The fast growth of technology today gives the ability for digital devices like smartphones and laptops to have a huge size of storage which is letting people to keep many of their infonnation like contact lists, photos, videos and even personal infonnation. When these infonnation are not useful anymore, users will delete them. However, the growth of technology also letting people to recover back data that has been deleted. In this case, users do not realise that their deleted data can be recovered and then used by unauthorized user. The data deleted is invisible but not gone. This is where file sanitization plays it role. File sanitization is the process of deleting the memory of the content and over write it with a different characters. In this research, the methods chosen to sanitize file are Write Zero, Write Zero Randomly and Write Zero Alternately. All of the techniques will overwrite data with zero. The best technique is chosen based on the comparison of average entropy value of the files after they have been overwritten. Write Zero is the only technique that is provided by many software like WipeFile and BitKiller. There is no software that provide Write Zero Randomly technique except for sanitizing disk using dd. As for that, Write Zero Randomly and proposed technique, Write Zero Alternately are developed using C programming language in Dev-C++. In this research, sanitization with Write Zero has the lowest average entropy value for text document (TXT), Microsoft Word (DOCX) and image (JPG) with 100% of data in the files undergone this technique have been zero-filled compared to Write Zero Randomly and Write Zero Alternately. Next, Write Zero Alternately is more efficient in tenns of average entropy by 4.64 bpB to its closest competitor which is Write Zero Randomly with 5.02 bpB. This shows that Write Zero is the best sanitization method. These file sanitization techniques are important to keep the confidentiality against unauthorized user

    Time-Frequency Analysis of Femoral and Carotid Arterial Doppler Signals

    Get PDF
    AbstractIn this study, the short time Fourier transform, continuous wavelet transform (CWT) and S-transform have been used for spectral analysis of the carotid and femoral arteries Doppler signal. Each of these methods can represent the temporal evolution of Doppler spectra know as the sonograms. Time-frequency analysis by S-transform presents a linear resolution that surpasses the problem of Fourier Transform by a slipping window (STFT) of fixed length and also corrects phase concept in the wavelet transform for the analysis of non-stationary signals. This transform provides a very suitable space for extracting features and the localization of discriminating information in time and frequency in Doppler ultrasonic signals. The sonograms have been then used to compare the methods in terms of their frequency resolution and effects in determining the stenosis of carotid and femoral arteries

    Classification of flow regimes using a neural network and a non-invasive ultrasonic sensor in an S-shaped pipeline-riser system

    Get PDF
    A method for classifying flow regimes is proposed that employs a neural network with inputs of extracted features from Doppler ultrasonic signals of flows using either the Discrete Wavelet Transform (DWT) or the Power Spectral Density (PSD). The flow regimes are classified into four types: annular, churn, slug, and bubbly flow regimes. The neural network used in this work is a feedforward network with 20 hidden neurons. The network comprises four output neurons, each of which corresponds to the target vector's element number. 13 and 40 inputs are used for features extracted from PSD and DWT respectively. Experimental data were collected from an industrial-scale multiphase flow facility. Using the PSD features, the neural network classifier misclassified 3 out of 31 test datasets in the classification and gave 90.3% accuracy, while only one dataset was misclassified with the DWT features, yielding an accuracy of 95.8%, thus showing the superiority of the DWT in feature extraction of flow regime classification. The approach demonstrates the applicability of a neural network and DWT for flow regime classification in industrial applications using a clamp-on Doppler ultrasonic sensor. The scheme has significant advantages over other techniques as only a non-radioactive and non-intrusive sensor is used. To the best of our knowledge, this is the first known successful attempt for the classification of liquid-gas flow regimes in an S-shape riser system using an ultrasonic sensor, PSD-DWTs features, and a neural network

    A Survey of Blind Modulation Classification Techniques for OFDM Signals

    Get PDF
    Blind modulation classification (MC) is an integral part of designing an adaptive or intelligent transceiver for future wireless communications. Blind MC has several applications in the adaptive and automated systems of sixth generation (6G) communications to improve spectral efficiency and power efficiency, and reduce latency. It will become a integral part of intelligent software-defined radios (SDR) for future communication. In this paper, we provide various MC techniques for orthogonal frequency division multiplexing (OFDM) signals in a systematic way. We focus on the most widely used statistical and machine learning (ML) models and emphasize their advantages and limitations. The statistical-based blind MC includes likelihood-based (LB), maximum a posteriori (MAP) and feature-based methods (FB). The ML-based automated MC includes k-nearest neighbors (KNN), support vector machine (SVM), decision trees (DTs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) based MC methods. This survey will help the reader to understand the main characteristics of each technique, their advantages and disadvantages. We have also simulated some primary methods, i.e., statistical- and ML-based algorithms, under various constraints, which allows a fair comparison among different methodologies. The overall system performance in terms bit error rate (BER) in the presence of MC is also provided. We also provide a survey of some practical experiment works carried out through National Instrument hardware over an indoor propagation environment. In the end, open problems and possible directions for blind MC research are briefly discussed

    Improving ECG Classification Accuracy Using an Ensemble of Neural Network Modules

    Get PDF
    This paper illustrates the use of a combined neural network model based on Stacked Generalization method for classification of electrocardiogram (ECG) beats. In conventional Stacked Generalization method, the combiner learns to map the base classifiers' outputs to the target data. We claim adding the input pattern to the base classifiers' outputs helps the combiner to obtain knowledge about the input space and as the result, performs better on the same task. Experimental results support our claim that the additional knowledge according to the input space, improves the performance of the proposed method which is called Modified Stacked Generalization. In particular, for classification of 14966 ECG beats that were not previously seen during training phase, the Modified Stacked Generalization method reduced the error rate for 12.41% in comparison with the best of ten popular classifier fusion methods including Max, Min, Average, Product, Majority Voting, Borda Count, Decision Templates, Weighted Averaging based on Particle Swarm Optimization and Stacked Generalization

    Experimental investigations of two-phase flow measurement using ultrasonic sensors

    Get PDF
    This thesis presents the investigations conducted in the use of ultrasonic technology to measure two-phase flow in both horizontal and vertical pipe flows which is important for the petroleum industry. However, there are still key challenges to measure parameters of the multiphase flow accurately. Four methods of ultrasonic technologies were explored. The Hilbert-Huang transform (HHT) was first applied to the ultrasound signals of air-water flow on horizontal flow for measurement of the parameters of the two- phase slug flow. The use of the HHT technique is sensitive enough to detect the hydrodynamics of the slug flow. The results of the experiments are compared with correlations in the literature and are in good agreement. Next, experimental data of air-water two-phase flow under slug, elongated bubble, stratified-wavy and stratified flow regimes were used to develop an objective flow regime classification of two-phase flow using the ultrasonic Doppler sensor and artificial neural network (ANN). The classifications using the power spectral density (PSD) and discrete wavelet transform (DWT) features have accuracies of 87% and 95.6% respectively. This is considerably more promising as it uses non-invasive and non-radioactive sensors. Moreover, ultrasonic pulse wave transducers with centre frequencies of 1MHz and 7.5MHz were used to measure two-phase flow both in horizontal and vertical flow pipes. The liquid level measurement was compared with the conductivity probes technique and agreed qualitatively. However, in the vertical with a gas volume fraction (GVF) higher than 20%, the ultrasound signals were attenuated. Furthermore, gas-liquid and oil-water two-phase flow rates in a vertical upward flow were measured using a combination of an ultrasound Doppler sensor and gamma densitometer. The results showed that the flow gas and liquid flow rates measured are within ±10% for low void fraction tests, water-cut measurements are within ±10%, densities within ±5%, and void fractions within ±10%. These findings are good results for a relatively fast flowing multiphase flow
    • …
    corecore