300 research outputs found

    Zeno machines and hypercomputation

    Get PDF
    This paper reviews the Church-Turing Thesis (or rather, theses) with reference to their origin and application and considers some models of "hypercomputation", concentrating on perhaps the most straight-forward option: Zeno machines (Turing machines with accelerating clock). The halting problem is briefly discussed in a general context and the suggestion that it is an inevitable companion of any reasonable computational model is emphasised. It is hinted that claims to have "broken the Turing barrier" could be toned down and that the important and well-founded role of Turing computability in the mathematical sciences stands unchallenged.Comment: 11 pages. First submitted in December 2004, substantially revised in July and in November 2005. To appear in Theoretical Computer Scienc

    Efficiency Theory: a Unifying Theory for Information, Computation and Intelligence

    Get PDF
    The paper serves as the first contribution towards the development of the theory of efficiency: a unifying framework for the currently disjoint theories of information, complexity, communication and computation. Realizing the defining nature of the brute force approach in the fundamental concepts in all of the above mentioned fields, the paper suggests using efficiency or improvement over the brute force algorithm as a common unifying factor necessary for the creation of a unified theory of information manipulation. By defining such diverse terms as randomness, knowledge, intelligence and computability in terms of a common denominator we are able to bring together contributions from Shannon, Levin, Kolmogorov, Solomonoff, Chaitin, Yao and many others under a common umbrella of the efficiency theory

    Efficiency Theory: a Unifying Theory for Information, Computation and Intelligence

    Get PDF
    The paper serves as the first contribution towards the development of the theory of efficiency: a unifying framework for the currently disjoint theories of information, complexity, communication and computation. Realizing the defining nature of the brute force approach in the fundamental concepts in all of the above mentioned fields, the paper suggests using efficiency or improvement over the brute force algorithm as a common unifying factor necessary for the creation of a unified theory of information manipulation. By defining such diverse terms as randomness, knowledge, intelligence and computability in terms of a common denominator we are able to bring together contributions from Shannon, Levin, Kolmogorov, Solomonoff, Chaitin, Yao and many others under a common umbrella of the efficiency theory. © Taru Publications

    Construction of an NP Problem with an Exponential Lower Bound

    Get PDF
    In this paper we present a Hashed-Path Traveling Salesperson Problem (HPTSP), a new type of problem which has the interesting property of having no polynomial time solutions. Next we show that HPTSP is in the class NP by demonstrating that local information about sub-routes is insufficient to compute the complete value of each route. As a consequence, via Ladner's theorem, we show that the class NPI is non-empty

    Revisiting clustering as matrix factorisation on the Stiefel manifold

    Get PDF
    International audienceThis paper studies clustering for possibly high dimensional data (e.g. images, time series, gene expression data, and many other settings), and rephrase it as low rank matrix estimation in the PAC-Bayesian framework. Our approach leverages the well known Burer-Monteiro factorisation strategy from large scale optimisation, in the context of low rank estimation. Moreover, our Burer-Monteiro factors are shown to lie on a Stiefel manifold. We propose a new generalized Bayesian estimator for this problem and prove novel prediction bounds for clustering. We also devise a componentwise Langevin sampler on the Stiefel manifold to compute this estimator

    Cryptanalysis of RSA: Integer Prime Factorization Using Genetic Algorithms

    Get PDF
    In recent years, researchers have been exploring alternative methods to solving Integer Prime Factorization, the decomposition of an integer into its prime factors. This has direct application to cryptanalysis of RSA, as one means of breaking such a cryptosystem requires factorization of a large number that is the product of two prime numbers. This paper applies three different genetic algorithms to solve this issue, utilizing mathematical knowledge concerning distribution of primes to improve the algorithms. The best of the three genetic algorithms has a chromosome that represents m in the equation prime = 6 m ± 1, and is able to factor a number of up to 22 decimal digits. This is a significantly larger number than the largest factored by comparable methods in earlier work. This leads to the conclusion that approaches such as genetic algorithms are a promising avenue of research into the problem of integer factorization

    An Accuracy-Assured Privacy-Preserving Recommender System for Internet Commerce

    Full text link
    Recommender systems, tool for predicting users' potential preferences by computing history data and users' interests, show an increasing importance in various Internet applications such as online shopping. As a well-known recommendation method, neighbourhood-based collaborative filtering has attracted considerable attention recently. The risk of revealing users' private information during the process of filtering has attracted noticeable research interests. Among the current solutions, the probabilistic techniques have shown a powerful privacy preserving effect. When facing kk Nearest Neighbour attack, all the existing methods provide no data utility guarantee, for the introduction of global randomness. In this paper, to overcome the problem of recommendation accuracy loss, we propose a novel approach, Partitioned Probabilistic Neighbour Selection, to ensure a required prediction accuracy while maintaining high security against kkNN attack. We define the sum of kk neighbours' similarity as the accuracy metric alpha, the number of user partitions, across which we select the kk neighbours, as the security metric beta. We generalise the kk Nearest Neighbour attack to beta k Nearest Neighbours attack. Differing from the existing approach that selects neighbours across the entire candidate list randomly, our method selects neighbours from each exclusive partition of size kk with a decreasing probability. Theoretical and experimental analysis show that to provide an accuracy-assured recommendation, our Partitioned Probabilistic Neighbour Selection method yields a better trade-off between the recommendation accuracy and system security.Comment: replacement for the previous versio
    • …
    corecore