65 research outputs found

    The determination of petroleum reservoir fluid properties : application of robust modeling approaches.

    Get PDF
    Doctor of Philosophy in Chemical Engineering. University of KwaZulu-Natal, Durban 2016.Abstract available in PDF file

    Thermodynamic Vapor-Liquid Equilibrium in Naphtha-Water Mixtures

    Get PDF
    Naphtha is used to dilute the froth from bitumen treatment. Naphtha is recovered using a Naphtha Recovery Unit (NRU) and sent back to the froth dilution step. To minimize the environmental and economic impact of the NRU, it is imperative to maximize the naphtha recovery. It is, in this respect, that enhanced NRU Vapour-Liquid-Liquid equilibrium data is a significant value. The prediction of phase equilibria for hydrocarbon/water blends in separators, is a subject of considerable importance for chemical processes. Despite its relevance, there are still pending questions. Among them, is the prediction of the correct number of phases. While a stability analysis using the Gibbs Free Energy of mixing and the NRTL model for n-octane/water, provide a good understanding of calculation issues when using HYSYS V9 and Aspen Plus V9 software, this shows that significant phase equilibrium uncertainties still exist. In the case of multicomponent mixtures, the Tangent Plane Distance (TPD) is evaluated as a possible criterion for calculating the number of phases. Additionally, Paraffinic Aromatic Synthetic Naphtha (PASN) with a similar True Boiling Point (TBP) as typical naphtha can be used. Runs were developed in a CREC VL Cell operated with n-octane/water and PASN/water mixtures under dynamic conditions and used to establish the two-phase (liquid-vapour) and three-phase (liquid-liquid-vapour) domains. Results obtained demonstrate that the complete solubility is larger than the predicted by simulation software or reported in the technical literature. Furthermore, and to provide an effective and accurate method for predicting the number of phases, a Classification Machine Learning (ML) technique was implemented. Finally, traditional flash split calculations are reported explaining the challenges presented for the solution of the Rachford-Rice equations. A comparison of flash calculations between water/n-octane and PASN/water mixtures using SRKKD EoS is provided. The value of an ML approach developed based on the abundant experimental data available from the CREC-VL experimental Cell experiments is presented

    Prediction of the physical properties of pure chemical compounds through different computational methods.

    Get PDF
    Ph. D. University of KwaZulu-Natal, Durban 2014.Liquid thermal conductivities, viscosities, thermal decomposition temperatures, electrical conductivities, normal boiling point temperatures, sublimation and vaporization enthalpies, saturated liquid speeds of sound, standard molar chemical exergies, refractive indices, and freezing point temperatures of pure organic compounds and ionic liquids are important thermophysical properties needed for the design and optimization of products and chemical processes. Since sufficiently purification of pure compounds as well as experimentally measuring their thermophysical properties are costly and time consuming, predictive models are of great importance in engineering. The liquid thermal conductivity of pure organic compounds was the first investigated property, in this study, for which, a general model, a quantitative structure property relationship, and a group contribution method were developed. The novel gene expression programming mathematical strategy [1, 2], firstly introduced by our group, for development of non-linear models for thermophysical properties, was successfully implemented to develop an explicit model for determination of the thermal conductivity of approximately 1600 liquids at different temperatures but atmospheric pressure. The statistical parameters of the obtained correlation show about 9% absolute average relative deviation of the results from the corresponding DIPPR 801 data [3]. It should be mentioned that the gene expression programing technique is a complicated mathematical algorithm and needs a significant computer power and this is the largest databases of thermophysical property that has been successfully managed by this strategy. The quantitative structure property relationship was developed using the sequential search algorithm and the same database used in previous step. The model shows the average absolute relative deviation (AARD %), standard deviation error, and root mean square error of 7.4%, 0.01, and 0.01 over the training, validation and test sets, respectively. The database used in previous sections was used to develop a group contribution model for liquid thermal conductivity. The statistical analysis of the performance of the obtained model shows approximately a 7.1% absolute average relative deviation of the results from the corresponding DIPPR 801 [4] data. In the next stage, an extensive database of viscosities of 443 ionic liquids was initially compiled from literature (more than 200 articles). Then, it was employed to develop a group contribution model. Using this model, a training set composed of 1336 experimental data was correlated with a low AARD% of about 6.3. A test set consists of 336 data point was used to validate this model. It shows an AARD% of 6.8 for the test set. In the next part of this study, an extensive database of thermal decomposition temperature of 586 ionic liquids was compiled from literature. Then, it was used to develop a quantitative structure property relationship. The proposed quantitative structure property relationship produces an acceptable average absolute relative deviation (AARD) of less than 5.2 % taking into consideration all 586 experimental data values. The updated database of thermal decomposition temperature including 613 ionic liquids was subsequently used to develop a group contribution model. Using this model, a training set comprised of 489 data points was correlated with a low AARD of 4.5 %. A test set consisting of 124 data points was employed to test its capability. The model shows an AARD of 4.3 % for the test set. Electrical conductivity of ionic liquids was the next property investigated in this study. Initially, a database of electrical conductivities of 54 ionic liquids was collected from literature. Then, it was used to develop two models; a quantitative structure property relationship and a group contribution model. Since the electrical conductivities of ionic liquids has a complicated temperature- and chemical structure- dependency, the least square support vector machines strategy was used as a non-linear regression tool to correlate the electrical conductivity of ionic liquids. The deviation of the quantitative structure property relationship from the 783 experimental data used in its development (training set) is 1.8%. The validity of the model was then evaluated using another experimental data set comprising 97 experimental data (deviation: 2.5%). Finally, the reproducibility and reliability of the model was successfully assessed using the last experimental dataset of 97 experimental data (deviation: 2.7%). Using the group contribution model, a training set composed of 863 experimental data was correlated with a low AARD of about 3.1% from the corresponding experimental data. Then, the model was validated using a data set composed of 107 experimental data points with a low AARD of 3.6%. Finally, a test set consists of 107 data points was used for its validation. It shows an AARD of 4.9% for the test set. In the next stage, the most comprehensive database of normal boiling point temperatures of approximately 18000 pure organic compounds was provided and used to develop a quantitative structure property relationship. In order to develop the model, the sequential search algorithm was initially used to select the best subset of molecular descriptors. In the next step, a three-layer feed forward artificial neural network was used as a regression tool to develop the final model. It seems that this is the first time that the quantitative structure property relationship technique has successfully been used to handle a large database as large as the one used for normal boiling point temperatures of pure organic compounds. Generally, handling large databases of compounds has always been a challenge in quantitative structure property relationship world due to the handling large number of chemical structures (particularly, the optimization of the chemical structures), the high demand of computational power and very high percentage of failures of the software packages. As a result, this study is regarded as a long step forward in quantitative structure property relationship world. A comprehensive database of sublimation enthalpies of 1269 pure organic compounds at 298.15 K was successfully compiled from literature and used to develop an accurate group contribution. The model is capable of predicting the sublimation enthalpies of organic compounds at 298.15 K with an acceptable average absolute relative deviation between predicted and experimental values of 6.4%. Vaporization enthalpies of organic compounds at 298.15 K were also studied in this study. An extensive database of 2530 pure organic compounds was used to develop a comprehensive group contribution model. It demonstrates an acceptable %AARD of 3.7% from experimental data. Speeds of sound in saturated liquid phase was the next property investigated in this study. Initially, A collection of 1667 experimental data for 74 pure chemical compounds were extracted from the ThermoData Engine of National Institute of Standards and Technology [5]. Then, a least square support vector machines-group contribution model was developed. The model shows a low AARD% of 0.5% from the corresponding experimental data. In the next part of this study, a simple group contribution model was presented for the prediction of the standard molar chemical exergy of pure organic compounds. It is capable of predicting the standard chemical exergy of pure organic compounds with an acceptable average absolute relative deviation of 1.6% from the literature data of 133 organic compounds. The largest ever reported databank for refractive indices of approximately 12 000 pure organic compounds was initially provided. A novel computational scheme based on coupling the sequential search strategy with the genetic function approximation (GFA) strategy was used to develop a model for refractive indices of pure organic compounds. It was determined that the strategy can have both the capabilities of handling large databases (the advantage of sequential search algorithm over other subset variable selection methods) and choosing most accurate subset of variables (the advantages of genetic algorithm-based subset variable selection methods such as GFA). The model shows a promising average absolute relative deviation of 0.9 % from the corresponding literature values. Subsequently, a group contribution model was developed based on the same database. The model shows an average absolute relative deviation of 0.83% from corresponding literature values. Freezing Point temperature of organic compounds was the last property investigated. Initially, the largest ever reported databank in open literature for freezing points of more than 16 500 pure organic compounds was provided. Then, the sequential search algorithm was successfully applied to derive a model. The model shows an average absolute relative deviations of 12.6% from the corresponding literature values. The same database was used to develop a group contribution model. The model demonstrated an average absolute relative deviation of 10.76%, which is of adequate accuracy for many practical applications

    Developing tools for determination of parameters involved in CO₂ based EOR methods

    Get PDF
    To mitigate the effects of climate change, CO₂ reduction strategies are suggested to lower anthropogenic emissions of greenhouse gasses owing to the use of fossil fuels. Consequently, the application of CO₂ based enhanced oil recovery methods (EORs) through petroleum reservoirs turn into the hot topic among the oil and gas researchers. This thesis includes two sections. In the first section, we developed deterministic tools for determination of three parameters which are important in CO₂ injection performance including minimum miscible pressure (MMP), equilibrium ratio (Kᵢ), and a swelling factor of oil in the presence of CO₂. For this purposes, we employed two inverse based methods including gene expression programming (GEP), and least square support vector machine (LSSVM). In the second part, we developed an easy-to-use, cheap, and robust data-driven based proxy model to determine the performance of CO₂ based EOR methods. In this section, we have to determine the input parameters and perform sensitivity analysis on them. Next step is designing the simulation runs and determining the performance of CO₂ injection in terms of technical viewpoint (recovery factor, RF). Finally, using the outputs gained from reservoir simulators and applying LSSVM method, we are going to develop the data-driven based proxy model. The proxy model can be considered as an alternative model to determine the efficiency of CO₂ based EOR methods in oil reservoir when the required experimental data are not available or accessible

    Integrated Chemical Processes in Liquid Multiphase Systems

    Get PDF
    The essential principles of green chemistry are the use of renewable raw materials, highly efficient catalysts and green solvents linked with energy efficiency and process optimization in real-time. Experts from different fields show, how to examine all levels from the molecular elementary steps up to the design and operation of an entire plant for developing novel and efficient production processes

    Artificial intelligence and chemical kinetics enabled property-oriented fuel design for internal combustion engine

    Get PDF
    Fuel Genome Project aims at addressing the forward problem of fuel property prediction and the inverse problems of molecule design, retrosynthesis and reaction condition prediction. This work primarily addresses the forward problem by integrating feature engineering theory, artificial intelligence (AI) technologies, gas-phase chemical kinetics. Group contribution method (GCM) is utilized to establish the GCM-UOB (University of Birmingham) 1.0 system with 22 molecular descriptors and the surrogate formulation is to minimize the difference of functional group fragments between target fuel and surrogate. The improved QSPR (quantitative structure–activity relationship)-UOB 2.0 system with 32 molecular features couples with machine learning (ML) algorithms to establish the regression models for fuel ignition quality prediction. QSPR-UOB 3.0 scheme expands to 42 molecular descriptors to improve the molecular resolution of aromatics and specific fuel types. The obtained structural features combining with ML algorithms enable to predict 15 physicochemical properties with high fidelity and efficiency. In addition to the technical route of ML-QSPR models, another route of deep learning-convolution neural network (DL-CNN) is proposed for property prediction and yield sooting index (YSI) is taken as a case study. The predicted accuracy of DL-CNN is inferior to the ML-QSPR model at its current status, but its benefit of automated feature extraction and rapid advance in classification problem make it a promising solution for regression problem. A high-throughput fuel screening is performed to identify the molecules with desired properties for both spark ignition (SI) and compression ignition (CI) engines which contains the Tier 1 physicochemical properties screening (based on the ML-QSPR models) and Tier 2 chemical kinetic screening (based on the detailed chemical mechanisms). Polyoxymethylene dimethyl ether 3 (PODE3) and diethoxymethane (DEM) are promising carbon-neutral fuels for CI engines and they are recommended by the virtual screening results. Their ignition delay time, laminar flame speed and dominant reactions of PODE3 and DEM are examined by chemical kinetics and a new DEM mechanism including both low and high-temperature reactions is constructed. Concluding remarks and research prospects are summarized in the final section

    MODELLING ASPHALTENE FOULING IN CRUDE OIL PROCESSES

    Get PDF

    Improving the performance of gas sensor systems with advanced data evaluation, operation, and calibration methods

    Get PDF
    In order to facilitate the widespread use of gas sensors, some challenges must still be overcome. Many of those are related to the reliable quantification of ultra-low concentrations of specific compounds in a background of other gases. This thesis focuses on three important items in the measurement chain: sensor material and operating modes, evaluation of the resulting data, and test gas generation for efficient sensor calibration. New operating modes and materials for gas-sensitive field-effect transistors have been investigated. Tungsten trioxide as gate oxide can improve the selectivity to hazardous volatile organic compounds like naphthalene even in a strong and variable ethanol background. The influence of gate bias and ultraviolet light has been studied with respect to the transport of oxygen anions on the sensor surface and was used to improve classification and quantification of different gases. DAV3E, an internationally recognized MATLAB-based toolbox for the evaluation of cyclic sensor data, has been developed and published as opensource. It provides a user-friendly graphical interface and specially tailored algorithms from multivariate statistics. The laboratory tests conducted during this project have been extended with an interlaboratory study and a field test, both yielding valuable insights for future, more complex sensor calibration. A novel, efficient calibration approach has been proposed and evaluated with ten different gas sensor systems.Vor der weitverbreiteten Nutzung von Gassensoren stehen noch einige Herausforderungen, insbesondere die zuverlässige Messung ultrakleiner Konzentrationen bestimmter Substanzen vor einem Hintergrund anderer Gase. Diese Arbeit konzentriert sich auf drei wichtige Glieder der erforderlichen Messkette: Material und Betriebsweise von Sensoren, Auswertung der anfallenden Daten sowie Generierung von Testgasen zur effizienten Kalibrierung. Neue Betriebsmodi und Materialien für gassensitive Feldeffekttransistoren wurden getestet. Wolframtrioxid kann als Gateoxid die Selektivität für flüchtige organische Verbindungen wie Naphthalin in einem variierenden Ethanolhintergrund verbessern. Der Einfluss von Gate-Bias und ultravioletter Strahlung auf die Bewegung von Sauerstoffionen auf der Oberfläche wurde untersucht und genutzt, um die Klassifizierung und Quantifizierung von Gasen zu verbessern. Eine international anerkannte MATLAB-Toolbox zur Auswertung zyklischer Sensordaten, DAV3E, wurde entwickelt und als open source veröffentlicht. Sie stellt eine nutzerfreundliche Oberfläche und speziell angepasste Algorithmen der multivariaten Statistik zur Verfügung. Die Laborexperimente wurden ergänzt durch vergleichende Messungen in zwei unabhängigen Laboren und einen Feldtest, womit wertvolle Erkenntnisse für die künftig notwendige, komplexe Kalibrierung von Sensoren gewonnen wurden. Ein neuartiger, effizienter Kalibrieransatz wurde vorgestellt und mit zehn unterschiedlichen Sensorsystemen evaluiert
    corecore