1,035 research outputs found

    Understanding the Structural and Functional Importance of Early Folding Residues in Protein Structures

    Get PDF
    Proteins adopt three-dimensional structures which serve as a starting point to understand protein function and their evolutionary ancestry. It is unclear how proteins fold in vivo and how this process can be recreated in silico in order to predict protein structure from sequence. Contact maps are a possibility to describe whether two residues are in spatial proximity and structures can be derived from this simplified representation. Coevolution or supervised machine learning techniques can compute contact maps from sequence: however, these approaches only predict sparse subsets of the actual contact map. It is shown that the composition of these subsets substantially influences the achievable reconstruction quality because most information in a contact map is redundant. No strategy was proposed which identifies unique contacts for which no redundant backup exists. The StructureDistiller algorithm quantifies the structural relevance of individual contacts and identifies crucial contacts in protein structures. It is demonstrated that using this information the reconstruction performance on a sparse subset of a contact map is increased by 0.4 A, which constitutes a substantial performance gain. The set of the most relevant contacts in a map is also more resilient to false positively predicted contacts: up to 6% of false positives are compensated before reconstruction quality matches a naive selection of contacts without any false positive contacts. This information is invaluable for the training to new structure prediction methods and provides insights into how robustness and information content of contact maps can be improved. In literature, the relevance of two types of residues for in vivo folding has been described. Early folding residues initiate the folding process, whereas highly stable residues prevent spontaneous unfolding events. The structural relevance score proposed by this thesis is employed to characterize both types of residues. Early folding residues form pivotal secondary structure elements, but their structural relevance is average. In contrast, highly stable residues exhibit significantly increased structural relevance. This implies that residues crucial for the folding process are not relevant for structural integrity and vice versa. The position of early folding residues is preserved over the course of evolution as demonstrated for two ancient regions shared by all aminoacyl-tRNA synthetases. One arrangement of folding initiation sites resembles an ancient and widely distributed structural packing motif and captures how reverberations of the earliest periods of life can still be observed in contemporary protein structures

    Deep learning of the dynamics of complex systems with its applications to biochemical molecules

    Get PDF
    Recent advancements in deep learning have revolutionized method development in several scientific fields and beyond. One central application is the extraction of equilibrium structures and long- timescale kinetics from molecular dynamics simulations, i.e. the well-known sampling problem. Previous state-of-the art methods employed a multi-step handcrafted data processing pipeline resulting in Markov state models (MSM), which can be understood as an approximation of the underlying Koopman operator. However, this approach demands choosing a set of features characterizing the molecular structure, methods and their parameters for dimension reduction to collective variables and clustering, and estimation strategies for MSMs throughout the processing pipeline. As this requires specific expertise, the approach is ultimately inaccessible to a broader community. In this thesis we apply deep learning techniques to approximate the Koopman operator in an end-to-end learning framework by employing the variational approach for Markov processes (VAMP). Thereby, the framework bypasses the multi-step process and automates the pipeline while yielding a model similar to a coarse-grained MSM. We further transfer advanced techniques from the MSM field to the deep learning framework, making it possible to (i) include experimental evidence into the model estimation, (ii) enforce reversibility, and (iii) perform coarse-graining. At this stage, post-analysis tools from MSMs can be borrowed to estimate rates of relevant rare events. Finally, we extend this approach to decompose a system into its (almost) independent subsystems and simultaneously estimate dynamical models for each of them, making it much more data efficient and enabling applications to larger proteins. Although our results solely focus on protein dynamics, the application to climate, weather, and ocean currents data is an intriguing possibility with potential to yield new insights and improve predictive power in these fields

    ImmunoLingo: Linguistics-based formalization of the antibody language

    Full text link
    Apparent parallels between natural language and biological sequence have led to a recent surge in the application of deep language models (LMs) to the analysis of antibody and other biological sequences. However, a lack of a rigorous linguistic formalization of biological sequence languages, which would define basic components, such as lexicon (i.e., the discrete units of the language) and grammar (i.e., the rules that link sequence well-formedness, structure, and meaning) has led to largely domain-unspecific applications of LMs, which do not take into account the underlying structure of the biological sequences studied. A linguistic formalization, on the other hand, establishes linguistically-informed and thus domain-adapted components for LM applications. It would facilitate a better understanding of how differences and similarities between natural language and biological sequences influence the quality of LMs, which is crucial for the design of interpretable models with extractable sequence-functions relationship rules, such as the ones underlying the antibody specificity prediction problem. Deciphering the rules of antibody specificity is crucial to accelerating rational and in silico biotherapeutic drug design. Here, we formalize the properties of the antibody language and thereby establish not only a foundation for the application of linguistic tools in adaptive immune receptor analysis but also for the systematic immunolinguistic studies of immune receptor specificity in general.Comment: 19 pages, 3 figure

    Deciphering the Preference and Predicting the Viability of Circular Permutations in Proteins

    Get PDF
    Circular permutation (CP) refers to situations in which the termini of a protein are relocated to other positions in the structure. CP occurs naturally and has been artificially created to study protein function, stability and folding. Recently CP is increasingly applied to engineer enzyme structure and function, and to create bifunctional fusion proteins unachievable by tandem fusion. CP is a complicated and expensive technique. An intrinsic difficulty in its application lies in the fact that not every position in a protein is amenable for creating a viable permutant. To examine the preferences of CP and develop CP viability prediction methods, we carried out comprehensive analyses of the sequence, structural, and dynamical properties of known CP sites using a variety of statistics and simulation methods, such as the bootstrap aggregating, permutation test and molecular dynamics simulations. CP particularly favors Gly, Pro, Asp and Asn. Positions preferred by CP lie within coils, loops, turns, and at residues that are exposed to solvent, weakly hydrogen-bonded, environmentally unpacked, or flexible. Disfavored positions include Cys, bulky hydrophobic residues, and residues located within helices or near the protein's core. These results fostered the development of an effective viable CP site prediction system, which combined four machine learning methods, e.g., artificial neural networks, the support vector machine, a random forest, and a hierarchical feature integration procedure developed in this work. As assessed by using the hydrofolate reductase dataset as the independent evaluation dataset, this prediction system achieved an AUC of 0.9. Large-scale predictions have been performed for nine thousand representative protein structures; several new potential applications of CP were thus identified. Many unreported preferences of CP are revealed in this study. The developed system is the best CP viability prediction method currently available. This work will facilitate the application of CP in research and biotechnology

    Differentiable molecular simulation can learn all the parameters in a coarse-grained force field for proteins

    Get PDF
    Finding optimal parameters for force fields used in molecular simulation is a challenging and time-consuming task, partly due to the difficulty of tuning multiple parameters at once. Automatic differentiation presents a general solution: run a simulation, obtain gradients of a loss function with respect to all the parameters, and use these to improve the force field. This approach takes advantage of the deep learning revolution whilst retaining the interpretability and efficiency of existing force fields. We demonstrate that this is possible by parameterising a simple coarse-grained force field for proteins, based on training simulations of up to 2,000 steps learning to keep the native structure stable. The learned potential matches chemical knowledge and PDB data, can fold and reproduce the dynamics of small proteins, and shows ability in protein design and model scoring applications. Problems in applying differentiable molecular simulation to all-atom models of proteins are discussed along with possible solutions and the variety of available loss functions. The learned potential, simulation scripts and training code are made available at https://github.com/psipred/cgdms

    Novel machine learning approaches revolutionize protein knowledge

    Full text link
    Breakthrough methods in machine learning (ML), protein structure prediction, and novel ultrafast structural aligners are revolutionizing structural biology. Obtaining accurate models of proteins and annotating their functions on a large scale is no longer limited by time and resources. The most recent method to be top ranked by the Critical Assessment of Structure Prediction (CASP) assessment, AlphaFold 2 (AF2), is capable of building structural models with an accuracy comparable to that of experimental structures. Annotations of 3D models are keeping pace with the deposition of the structures due to advancements in protein language models (pLMs) and structural aligners that help validate these transferred annotations. In this review we describe how recent developments in ML for protein science are making large-scale structural bioinformatics available to the general scientific communit

    Novel machine learning approaches revolutionize protein knowledge

    Get PDF
    Breakthrough methods in machine learning (ML), protein structure prediction, and novel ultrafast structural aligners are revolutionizing structural biology. Obtaining accurate models of proteins and annotating their functions on a large scale is no longer limited by time and resources. The most recent method to be top ranked by the Critical Appraisal Skills Program (CASP) assessment, AlphaFold 2 (AF2), is capable of building structural models with an accuracy comparable to that of experimental structures. Annotations of 3D models are keeping pace with the deposition of the structures due to advancements in protein language models (pLMs) and structural aligners that help validate these transferred annotations. In this review we describe how recent developments in ML for protein science are making large-scale structural bioinformatics available to the general scientific community

    A review of estimation of distribution algorithms in bioinformatics

    Get PDF
    Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subject of the major part of such applications. Estimation of distribution algorithms (EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining the nature and complexity of the probabilistic model of each EDA variant. We review a set of innovative works that make use of EDA techniques to solve challenging bioinformatics problems, emphasizing the EDA paradigm's potential for further research in this domain

    Computational and Experimental Approaches to Reveal the Effects of Single Nucleotide Polymorphisms with Respect to Disease Diagnostics

    Get PDF
    DNA mutations are the cause of many human diseases and they are the reason for natural differences among individuals by affecting the structure, function, interactions, and other properties of DNA and expressed proteins. The ability to predict whether a given mutation is disease-causing or harmless is of great importance for the early detection of patients with a high risk of developing a particular disease and would pave the way for personalized medicine and diagnostics. Here we review existing methods and techniques to study and predict the effects of DNA mutations from three different perspectives: in silico, in vitro and in vivo. It is emphasized that the problem is complicated and successful detection of a pathogenic mutation frequently requires a combination of several methods and a knowledge of the biological phenomena associated with the corresponding macromolecules
    • …
    corecore