98 research outputs found

    Building a test bed for simulation analysis for the internet of things

    Get PDF
    Mestrado com dupla diplomação com a Universidade Tecnológica e Federal do ParanáThe Internet of Things (IoT) enables the mix between the physical and informational world. Physical objects will be able to see, hear, think together, share information and coordinate decisions, without human interference in a variety of domains. To enable this vision of IoT in large scale is expected of the equipment to be low-cost, mobile, power efficient, computational constrained, and wireless communication enabled. This project performs an extensive overview of the state-of-the-art in communication technologies for IoT, simulation theory and tools. It also describes test bed for IoT simulation and its implementation. The simulation was built with Castalia Simulator (i.e. Wireless Sensor Networks (WSN) network) and INET framework (i.e. IP network), both extends OMNeT++ features. There are two independent networks that communicate through files and exchange information about source, destination, payload and simulation time. Analyzing the outputs is possible to assure that the routing protocol that is provided in the Castalia Simulator does not provide any advantage in terms of packets loss, packets reception or energy consumption.A Internet das Coisas (IoT) permite a mistura entre o mundo físico e informacional. Objetos físicos serão capazes de ver, ouvir, pensar juntos, compartilhar informações e coordenar decisões, sem interferência humana em uma variedade de domínios. Para permitir essa visão de IoT em larga escala, espera-se que o equipamento seja de baixo custo, móvel, eficiente em termos de energia, com restrições computacionais e possibilite a comunicação sem fio. Este projeto faz uma extensa visão geral do estado da arte em tecnologias de comunicação para IoT, teoria de simulação e ferramentas. Também descreve o banco de testes para simulação de IoT e sua implementação. A simulação foi construída com o Simulador Castalia (ou seja, rede WSN) e o framework INET (ou seja, rede IP), ambos estendem os recursos do OMNeT ++. Existem duas redes independentes que se comunicam através de arquivos e trocam informações sobre origem, destino, carga útil e tempo de simulação. Analisando os resultados é possível garantir que o protocolo de roteamento que é fornecido no Simulador Castalia não oferece qualquer vantagem em termos de quebra de pacotes, recepção de pacotes ou consumo de energia

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Low power wide area network, cognitive radio and the internet of things : potentials for integration

    Get PDF
    The Internet of Things (IoT) is an emerging paradigm that enables many beneficial and prospective application areas, such as smart metering, smart homes, smart industries, and smart city architectures, to name but a few. These application areas typically comprise end nodes and gateways that are often interconnected by low power wide area network (LPWAN) technologies, which provide low power consumption rates to elongate the battery lifetimes of end nodes, low IoT device development/purchasing costs, long transmission range, and increased scalability, albeit at low data rates. However, most LPWAN technologies are often confronted with a number of physical (PHY) layer challenges, including increased interference, spectral inefficiency, and/or low data rates for which cognitive radio (CR), being a predominantly PHY layer solution, suffices as a potential solution. Consequently, in this article, we survey the potentials of integrating CR in LPWAN for IoT-based applications. First, we present and discuss a detailed list of different state-of-the-art LPWAN technologies; we summarize the most recent LPWAN standardization bodies, alliances, and consortia while emphasizing their disposition towards the integration of CR in LPWAN.We then highlight the concept of CR in LPWAN via a PHY-layer front-end model and discuss the benefits of CR-LPWAN for IoT applications. A number of research challenges and future directions are also presented. This article aims to provide a unique and holistic overview of CR in LPWAN with the intention of emphasizing its potential benefits.This work was supported by the Council for Scientific and Industrial Research, Pretoria, South Africa, through the Smart Networks collaboration initiative and Internet of Things (IoT)-Factory Program (funded by the Department of Science and Innovation (DSI), South Africa).http://www.mdpi.com/journal/sensorsam2021Electrical, Electronic and Computer Engineerin

    Modeling and simulation of an IoT enabled cold Chain Logistics management system

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Dünya ekonomisinin etkileyici bir şekilde büyümesi, soğuk zincirde izlenmesi ve yönetilmesi gereken özellikle sıcaklık duyarlı ürünler için belirsizlik durumları karşısında etkin, esnek ve duyarlı olabilmek amacıyla lojistik hizmetleri talep eden tedarik zincirinde artış sağlamıştır. Bunun gerçekleştirilebilmesi için Lojistik şirketerinin uygun bilişim teknolojileri ile desteklenmesi gerekmektedir. İnternet kullanımı ile müşteri ve lojistik sağlayıcı arasında etkili bir bilgi akışı ortamı sağlanmaktadır; ancak lojistik hizmetindeki bilgi ve ürün akışı arasındaki mevcut açıklık, sıcaklık duyarlı nesneler hakkında gerçek zamanlı bilginin elde edilmesinde karar vericiler için lojistik yönetimini daha zor duruma getiren bir problem oluşturmaktadır. Nesnelerin İnterneti alanındaki gelişmeler soğuk zincir sanayilerinde izleme, yönetme ve gerçek zamanlı görünürlük sağlama ve uygun zeka seviyesi ile bilgi paylaşımı alanında potensiyel çözümler sunmaktadır. Bu çalışmada soğuk zincirin gerçek zamanlı ortam sıcaklığını izleme, yönetme ve soğuk zincir içerisindeki sıcaklık duyarlı ürünlerin raf ömrünün tahmin edilmesi aracılığıyla tüm karar vericilerin karar desteklerini geliştirmeye yardımcı olan IoT erişimli soğuk zincir lojistiği gösterilemektedir. Çalışma içerisinde, gerçek zamanlı ortam verileri IEEE 802.15.4 kablosuz algılayıcı ağ yapısı kullanılarak elde edilmiş ve toplanan veriler bir ağ geçidi aracılığıyla sunucuya, ürünlerin raf ömürlerinin geliştirilen karar destek sistemi yardıyla tahmin edilebilmesini sağlamak üzere, gönderilmiştir. Ayrıca, soğuk zincir içerisindeki bozulabilir ürünlerin tespiti için Radyo Frekanslı Tanıma (Radio Frequency Identification-RFID) kullanılmıştır. Çalışma içerisinde kullanılan tüm cihazlar ve protokoller olay-güdümlü Riverbed Modeler yazılımıyla modellenerek benzetimleri yapılmıştır.The Dramatic growth of world economy results growth in the supply chain which demands logistics service to be agile, flexible and responsive in the face of uncertainty, especially for temperature sensitive products that need to be monitored and managed in the cold chain. To achieve this, Logistics companies must be supported by appropriate information technologies. Internet provides an effective means of driving information between customer and logistics provider, however, existing gap between products flow and information flow in logistic service has created a problem in getting real-time information about temperature sensitive items which make logistics management more challenging for decision makers. The growth of internet of things (IoT) gives a potential solution for monitoring, managing, and achieving real-time visibility and sharing information with the appropriate level of intelligence in cold chain industries. This paper demonstrates IoT enabled cold chain logistics that helps to enhance the decision support of all actors through managing, monitoring the real-time ambient temperature of the cold chain and predicting the shelf-life of temperature sensitive products inside the cold chain. In the study, real-time data of ambient parameters are gathered using IEEE 802.15.4 based wireless sensor networks and sent to the remote server through a gateway so that the shelf life of the products can be predicted by the decision support system developed. Radio Frequency Identification (RFID) is also used for identification of perishable goods inside the cold chain. All the devices and protocols employed in the study are modeled and simulated using event-driven Riverbed Modeler software

    Real-time wireless networks for industrial control systems

    Get PDF
    The next generation of industrial systems (Industry 4.0) will dramatically transform manyproductive sectors, integrating emerging concepts such as Internet of Things, artificialintelligence, big data, cloud robotics and virtual reality, to name a few. Most of thesetechnologies heavily rely on the availability of communication networks able to offernearly–istantaneous, secure and reliable data transfer. In the industrial sector, these tasks are nowadays mainly accomplished by wired networks, that combine the speed ofoptical fiber media with collision–free switching technology. However, driven by the pervasive deployment of mobile devices for personal com-munications in the last years, more and more industrial applications require wireless connectivity, which can bring enormous advantages in terms of cost reduction and flex-ibility. Designing timely, reliable and deterministic industrial wireless networks is a complicated task, due to the nature of the wireless channel, intrinsically error–prone andshared among all the devices transmitting on the same frequency band. In this thesis, several solutions to enhance the performance of wireless networks employed in industrial control applications are proposed. The presented approaches differ in terms of achieved performance and target applications, but they are all characterized by an improvement over existing industrial wireless solutions in terms of timeliness, reliability and determinism. When possible, an experimental validation of the designed solutions is provided. The obtained results prove that significant performance improvements are already possible, often using commercially available devices and preserving compliance to existing standards. Future research efforts, combined with the availability of new chipsets and standards, could lead to a world where wireless links effectively replace most of the existing cables in industrial environments, as it is already the case in the consumer market

    Power line communications: an implementation of a real time control architecture for smart grid

    Get PDF
    Negli ultimi anni è aumentata la presenza di risorse energetiche distribuite (DERs) nella rete elettrica. La visione della ``rete intelligente'' (Smart Grid) cerca di introdurre un'infrastruttura di controllo e di comunicazione di tipo distribuito in modo da sfruttare le potenzialità delle DERs e quindi potenziare e modernizzare la rete di distribuzione attuale. Applicandolo alle reti a bassa tensione, la cosiddetta ``Smart Microgrids'', si è sviluppato un banco di prova (testbed) che permette di dimostrare tecniche di riduzione delle perdite di distribuzione. La soluzione adottata bilancia localmente la potenza reattiva della microgrid attraverso il controllo delle risorse locali ottenendo una riduzione della corrente necessaria per alimentare la rete. Inoltre, vengono analizzati i vantaggi nell'usare la linea elettrica come mezzo di comunicazione e vengono evidenziati alcuni standard di comunicazion

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches
    corecore