1,503 research outputs found

    Forecasting of Medium-term Rainfall Using Artificial Neural Networks: Case Studies from Eastern Australia

    Get PDF
    The advent of machine learning, of which artificial neural networks (ANN) are a component, has provided an opportunity for improved rainfall forecasts, which is of value for water infrastructure management, agriculture, mining and other industries. In this chapter, ANNs are shown to provide more skillful monthly rainfall forecasts for locations in south-eastern Queensland, Australia, for lead-times of 3–12 months. The skill of the forecasts from the ANNs is highest when the models are individually optimized for each month, and when longer-duration series are used as input. The ANN technique has application where there is temperature and rainfall data extending back at least 50 years. Such datasets exist for much of Europe and North America, though a review of the available literature indicates most research into the application of ANN has focused on China, India and Australia

    Flood Prediction and Uncertainty Estimation using Deep Learning

    Get PDF
    Floods are a complex phenomenon that are difficult to predict because of their non-linear and dynamic nature. Therefore, flood prediction has been a key research topic in the field of hydrology. Various researchers have approached this problem using different techniques ranging from physical models to image processing, but the accuracy and time steps are not sufficient for all applications. This study explores deep learning techniques for predicting gauge height and evaluating the associated uncertainty. Gauge height data for the Meramec River in Valley Park, Missouri was used to develop and validate the model. It was found that the deep learning model was more accurate than the physical and statistical models currently in use while providing information in 15 minute increments rather than six hour increments. It was also found that the use of data sub-selection for regularization in deep learning is preferred to dropout. These results make it possible to provide more accurate and timely flood prediction for a wide variety of applications, including transportation systems

    Impact‐based forecasting for pluvial floods

    Get PDF
    Pluvial floods in urban areas are caused by local, fast storm events with very high rainfall rates, which lead to inundation of streets and buildings before the storm water reaches a watercourse. An increase in frequency and intensity of heavy rainfall events and an ongoing urbanization may further increase the risk of pluvial flooding in many urban areas. Currently, warnings for pluvial floods are mostly limited to information on rainfall intensities and durations over larger areas, which is often not detailed enough to effectively protect people and goods. We present a proof-of-concept for an impact-based forecasting system for pluvial floods. Using a model chain consisting of a rainfall forecast, an inundation, a contaminant transport and a damage model, we are able to provide predictions for the expected rainfall, the inundated areas, spreading of potential contamination and the expected damage to residential buildings. We use a neural network-based inundation model, which significantly reduces the computation time of the model chain. To demonstrate the feasibility, we perform a hindcast of a recent pluvial flood event in an urban area in Germany. The required spatio-temporal accuracy of rainfall forecasts is still a major challenge, but our results show that reliable impact-based warnings can be forecasts are available up to 5 min before the peak of an extreme rainfall event. Based on our results, we discuss how the outputs of the impact-based forecast could be used to disseminate impact-based early warnings

    Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management

    Get PDF
    The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management

    Artificial Neural Network-Based Flood Forecasting: Input Variable Selection and Peak Flow Prediction Accuracy

    Get PDF
    Floods are the most frequent and costly natural disaster in Canada. Flow forecasting models can be used to provide an advance warning of flood risk and mitigate flood damage. Data-driven models have proven to be suitable for flow forecasting applications, yet there are several outstanding challenges associated with model development. Firstly, this research compares four methods for input variable selection for data-driven models, which are used to minimize model complexity and improve performance. Next, methods for reducing the temporal error for data-driven flood forecasting models are investigated. Two procedures are proposed to minimize timing error: error weighting and least-squares boosting. A class of performance measures called visual measures is used to discriminate between timing and amplitude errors, and hence quantifying the impacts of each correction procedure. These studies showcase methods for improving the performance of flow forecasting models, more reliable flood risk predictions, and better preparedness for flood events

    A Hybrid Wavelet de-noising and Rank-Set Pair Analysis approach for forecasting hydro-meteorological time series

    Get PDF
    Accurate, fast forecasting of hydro-meteorological time series is presently a major challenge in drought and flood mitigation. This paper proposes a hybrid approach, wavelet de-noising (WD) and Rank-Set Pair Analysis (RSPA), that takes full advantage of a combination of the two approaches to improve forecasts of hydro-meteorological time series. WD allows decomposition and reconstruction of a time series by the wavelet transform, and hence separation of the noise from the original series. RSPA, a more reliable and efficient version of Set Pair Analysis, is integrated with WD to form the hybrid WD-RSPA approach. Two types of hydro-meteorological data sets with different characteristics and different levels of human influences at some representative stations are used to illustrate the WD-RSPA approach. The approach is also compared to three other generic methods: the conventional Auto Regressive Integrated Moving Average (ARIMA) method, Artificial Neural Networks (ANNs) (BP-error Back Propagation, MLP-Multilayer Perceptron and RBF-Radial Basis Function), and RSPA alone. Nine error metrics are used to evaluate the model performance. Compared to three other generic methods, the results generated by WD-REPA model presented invariably smaller error measures which means the forecasting capability of the WD-REPA model is better than other models. The results show that WD-RSPA is accurate, feasible, and effective. In particular, WD-RSPA is found to be the best among the various generic methods compared in this paper, even when the extreme events are included within a time series
    corecore