121,720 research outputs found

    Continental Scale Modelling of Water Quality in Rivers

    Get PDF
    Global and continental scale modelling has been confined to water quantity (e.g. WaterGAP - Water Global Assessment and Prognosis (Alcamo et al. 2003), GWAVA - Global Water AVailability Assessment (Meigh et al, 1999)). Here we describe an approach to include water quality at these scales within the WaterGAP model. The application is to the pan-European area and is being carried out within the EU-funded SCENES Project which has the principal goal of developing new scenarios of the future of freshwater resources in Europe. The model operates on 5x5 arc-minute grid squares. Water flows in and between grid cells are provided by WaterGAP. The water quality loadings into the river system comprise point sources (domestic effluent, manufacturing discharges and urban runoff) and diffuse sources (runoff from land and scattered settlements not connected to the public sewerage system). Point source loadings are calculated for each country using easily available datasets. For example, the domestic load is a per capita emission factor times by country population multiplied by the percentage of the population connected to the sewage system, which is then reduced by the amount removed in each of three types of sewage treatment (primary, secondary and tertiary). Data on the amount treated in different types of sewage works is set for each country, while the amount removed by treatment types will vary with the water quality variable being modelled. Country level data is converted to grid square data required by the model, according to the population in each grid square. Diffuse sources from land are calculated by regression models based on runoff and land use (e.g. numbers of livestock) for each model grid square. The modelling system has currently been set up to simulate biochemical oxygen demand (BOD) and total dissolved solids. The model was tested against measured longitudinal profiles and time series data for BOD on contrasting rivers e.g. the River Thames (UK) driven by domestic loading and the River Ebro (Spain) with a high share of discharges from livestock farming. Further developments will see the inclusion of total nitrogen (TN), total phosphorus (TP) and dissolved oxygen. Within the SCENES project a set of future scenarios reflecting different outlooks on Europe has been developed, called “Economy First”, “Fortress Europe”, “Sustainability Eventually” and “Policy Rules”. An Expert Panel was used to suggest what these futures would mean for drivers of water quantity and water quality across pan-Europe. We have projected how changes in percentage population connected to sewers, the level of sewage treatment and population would change loadings from domestic effluent for TN, TP and BOD. In time, these will be used to predict future water quality in European rivers

    Development and testing of a risk indexing framework to determine field-scale critical source areas of faecal bacteria on grassland.

    Get PDF
    This paper draws on lessons from a UK case study in the management of diffuse microbial pollution from grassland farm systems in the Taw catchment, south west England. We report on the development and preliminary testing of a field-scale faecal indicator organism risk indexing tool (FIORIT). This tool aims to prioritise those fields most vulnerable in terms of their risk of contributing FIOs to water. FIORIT risk indices were related to recorded microbial water quality parameters (faecal coliforms [FC] and intestinal enterococci [IE]) to provide a concurrent on-farm evaluation of the tool. There was a significant upward trend in Log[FC] and Log[IE] values with FIORIT risk score classification (r2 =0.87 and 0.70, respectively and P<0.01 for both FIOs). The FIORIT was then applied to 162 representative grassland fields through different seasons for ten farms in the case study catchment to determine the distribution of on-farm spatial and temporal risk. The high risk fields made up only a small proportion (1%, 2%, 2% and 3% for winter, spring, summer and autumn, respectively) of the total number of fields assessed (and less than 10% of the total area), but the likelihood of the hydrological connection of high FIO source areas to receiving watercourses makes them a priority for mitigation efforts. The FIORIT provides a preliminary and evolving mechanism through which we can combine risk assessment with risk communication to end-users and provides a framework for prioritising future empirical research. Continued testing of FIORIT across different geographical areas under both low and high flow conditions is now needed to initiate its long term development into a robust indexing tool

    Evaluation of an evaluation list for model complexity

    Get PDF
    This study (‘WOt-werkdocument’) builds on the project ‘Evaluation model complexity’, in which a list has been developed to assess the ‘equilibrium’ of a model or database. This list compares the complexity of a model or database with the availability and quality of data and the application area. A model or database is said to be in equilibrium if the uncertainty in the predictions by the model or database is appropriately small for the intended application, while the data availability supports this complexity. In this study the prototype of the list is reviewed and tested by applying it to test cases. The review has been performed by modelling experts from within and outside Wageningen University & Research centre (Wageningen UR). The test cases have been selected form the scientific literature in order to evaluate the various elements of the list. The results are used to update the list to a new version

    Adaptation of WASH Services Delivery to Climate Change and Other Sources of Risk and Uncertainty

    Get PDF
    This report urges WASH sector practitioners to take more seriously the threat of climate change and the consequences it could have on their work. By considering climate change within a risk and uncertainty framework, the field can use the multitude of approaches laid out here to adequately protect itself against a range of direct and indirect impacts. Eleven methods and tools for this specific type of risk management are described, including practical advice on how to implement them successfully

    Monitoring land use changes using geo-information : possibilities, methods and adapted techniques

    Get PDF
    Monitoring land use with geographical databases is widely used in decision-making. This report presents the possibilities, methods and adapted techniques using geo-information in monitoring land use changes. The municipality of Soest was chosen as study area and three national land use databases, viz. Top10Vector, CBS land use statistics and LGN, were used. The restrictions of geo-information for monitoring land use changes are indicated. New methods and adapted techniques improve the monitoring result considerably. Providers of geo-information, however, should coordinate on update frequencies, semantic content and spatial resolution to allow better possibilities of monitoring land use by combining data sets

    Derivation of Economic and Social Indicators for a Spatial Decision Support System to Evaluate the Impacts of Urban Development on Water Bodies in New Zealand

    Get PDF
    There is mounting evidence that urban development in New Zealand has contributed to poor water quality and ecological degradation of coastal and fresh water receiving waters. As a consequence, local governments have identified the need for improved methods to guide decision making to achieve improved outcomes for those receiving waters. This paper reports progress on a research programme to develop a catchmentscale spatial decision-support system (SDSS) that will aid evaluation of the impacts of urban development on attributes such as water and sediment quality; ecosystem health; and economic, social and cultural values. The SDSS aims to express indicators of impacts on these values within a sustainability indexing system in order to allow local governments to consider them holistically over planning timeframes of several decades. The SDSS will use a combination of deterministic and probabilistic methods to, firstly, estimate changes to environmental stressors such as contaminant loads from different land use and stormwater management scenarios and, secondly, use these results and information from a range of other sources to generate indicator values. This paper describes the project’s approach to the derivation of indicators of economic and social well being associated with the effects of urban storm water run-off on freshwater and estuarine receiving waters.Environmental Economics and Policy,
    • 

    corecore