2,632 research outputs found

    Closed-loop control of anesthesia : survey on actual trends, challenges and perspectives

    Get PDF
    Automation empowers self-sustainable adaptive processes and personalized services in many industries. The implementation of the integrated healthcare paradigm built on Health 4.0 is expected to transform any area in medicine due to the lightning-speed advances in control, robotics, artificial intelligence, sensors etc. The two objectives of this article, as addressed to different entities, are: i) to raise awareness throughout the anesthesiologists about the usefulness of integrating automation and data exchange in their clinical practice for providing increased attention to alarming situations, ii) to provide the actualized insights of drug-delivery research in order to create an opening horizon towards precision medicine with significantly improved human outcomes. This article presents a concise overview on the recent evolution of closed-loop anesthesia delivery control systems by means of control strategies, depth of anesthesia monitors, patient modelling, safety systems, and validation in clinical trials. For decades, anesthesia control has been in the midst of transformative changes, going from simple controllers to integrative strategies of two or more components, but not achieving yet the breakthrough of an integrated system. However, the scientific advances that happen at high speed need a modern review to identify the current technological gaps, societal implications, and implementation barriers. This article provides a good basis for control research in clinical anesthesia to endorse new challenges for intelligent systems towards individualized patient care. At this connection point of clinical and engineering frameworks through (semi-) automation, the following can be granted: patient safety, economical efficiency, and clinicians' efficacy

    Mechatronics of systems with undetermined configurations

    Get PDF
    This work is submitted for the award of a PhD by published works. It deals with some of the efforts of the author over the last ten years in the field of Mechatronics. Mechatronics is a new area invented by the Japanese in the late 1970's, it consists of a synthesis of computers and electronics to improve mechanical systems. To control any mechanical event three fundamental features must be brought together: the sensors used to observe the process, the control software, including the control algorithm used and thirdly the actuator that provides the stimulus to achieve the end result. Simulation, which plays such an important part in the Mechatronics process, is used in both in continuous and discrete forms. The author has spent some considerable time developing skills in all these areas. The author was certainly the first at Middlesex to appreciate the new developments in Mechatronics and their significance for manufacturing. The author was one of the first mechanical engineers to recognise the significance of the new transputer chip. This was applied to the LQG optimal control of a cinefilm copying process. A 300% improvement in operating speed was achieved, together with tension control. To make more efficient use of robots they have to be made both faster and cheaper. The author found extremely low natural frequencies of vibration, ranging from 3 to 25 Hz. This limits the speed of response of existing robots. The vibration data was some of the earliest available in this field, certainly in the UK. Several schemes have been devised to control the flexible robot and maintain the required precision. Actuator technology is one area where mechatronic systems have been the subject of intense development. At Middlesex we have improved on the Aexator pneumatic muscle actuator, enabling it to be used with a precision of about 2 mm. New control challenges have been undertaken now in the field of machine tool chatter and the prevention of slip. A variety of novel and traditional control algorithms have been investigated in order to find out the best approach to solve this problem

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Design New Online Tuning Intelligent Chattering Free Fuzzy Compensator

    Full text link
    corecore