50 research outputs found

    SEISMIC DATA MULTI-SPECTRAL ANALYSIS, ATTENUATION ESTIMATION AND SEISMIC SEQUENCE STRATIGRAPHY ENHANCEMENT APPLIED TO CONVENTIONAL AND UNCONVENTIONAL RESERVOIRS

    Get PDF
    Seismic data are an essential resource for interpretation, providing abundant information about geological structures, sedimentation, stratigraphy and reservoir quality. Geophysicists have dedicated tremendous efforts in fully utilizing the information content in seismic data. Time series analysis and frequency (spectral) analysis are the two most common tools used to characterize seismic data. Multi-spectral analysis highlights geological features at different scales. The spectral sensitivity is not only from the tuning effects, but also from the geological structures and rock properties, including attenuation. To analyze the additional information in the spectral components rather than in the broad-band data, I begin by examining the spectrally limited coherence responses of multiple stages of incised valleys of Red Fork formation, Anadarko Basin, Oklahoma. Later, I combine covariance matrices for each spectral component, add them together, and compute multi-spectral coherence images. Spectral ratio and frequency shift methods are traditional attenuation estimation methods. However, the assumptions of each method introduce errors and instabilities into the results. I propose a modified frequency shift method to estimate attenuation (the reciprocal of the quality factor, Q), that relaxes some of these assumptions. Synthetic and field applications show robust and accurate results. Thin-bed layering also modifies the spectra, causing simple attenuation estimation to be inaccurate. To address this limitation, I use well logs based impedance inversion results to calculate a spectral correction for elastic variability in the spectra prior to estimating the inelastic attenuation contribution. The spectral correction can be viewed as a pre-conditioning step, following which both spectral ratio and frequency shift methods can produce better results. xix Traditional attenuation estimation methods work well in high porosity and high permeability gas sands. However, the well accepted squirt model does not apply to low permeability shale reservoirs. Rather, micro-cracks generate strong geometric or scattering attenuation, which combined with the intrinsic attenuation produced by TOC (total organic carbon) result in complicated spectral responses. Rather than estimating Q, I evaluate a suite of attenuation attributes. Even though the mechanism underlying may be unknown, these attenuation attributes can be statistically linked to the production and geology. Using the classic Fourier transform, the available spectral band often falls between 10 and 80 Hz. Nevertheless, interpreters observe lower frequency patterns in the data, for example, a 200 ms thick (5 Hz) pattern of low reflectivity sandstone and a 400 ms thick (2.5 Hz) pattern of high reflectivity responses (e.g. sabkhas or cyclothems). I introduce an adaptive intrinsic mode decomposition method called variational mode decomposition to analyze the “rhythm” in the seismic data. The intrinsic modes are defined as combinations of AM modulated signals, which are analyzed in the frequency domain with carrier frequencies (that fall within the 10-80 Hz limit), to characterize the buried stratigraphy information seen in the longer wavelength patterns. Because intrinsic modes are able to model seismic signals, but unable to model the noise component, the random noise lies within the residual of the intrinsic mode decomposition. Unlike filtering methods with predefined parameters, I develop a fully data-driven denoising method to suppress random noise, thereby enhancing the data quality

    Tracing back the source of contamination

    Get PDF
    From the time a contaminant is detected in an observation well, the question of where and when the contaminant was introduced in the aquifer needs an answer. Many techniques have been proposed to answer this question, but virtually all of them assume that the aquifer and its dynamics are perfectly known. This work discusses a new approach for the simultaneous identification of the contaminant source location and the spatial variability of hydraulic conductivity in an aquifer which has been validated on synthetic and laboratory experiments and which is in the process of being validated on a real aquifer

    Ultra-fast screening of stress-sensitive (naturally fractured) reservoirs using flow diagnostics

    Get PDF
    Quantifying the impact of poro-mechanics on reservoir performance is critical to the sustainable management of subsurface reservoirs containing either hydrocarbons, groundwater, geothermal heat, or being targeted for geological storage of fluids (e.g., CO2 or H2). On the other hand, accounting for poro-mechanical effects in full-field reservoir simulation studies and uncertainty quantification workflows in complex reservoir models is challenging, mainly because exploring and capturing the full range of geological and mechanical uncertainties requires a large number of numerical simulations and is hence computationally intensive. Specifically, the integration of poro-mechanical effects in full-field reservoir simulation studies is still limited, mainly because of the high computational cost. Consequently, poro-mechanical effects are often ignored in reservoir engineering workflows, which may result in inadequate reservoir performance forecasts. This thesis hence develops an alternative approach that couples hydrodynamics using existing flow diagnostics simulations for single- and dual-porosity models with poro mechanics to screen the impact of coupled poro-mechanical processes on reservoir performance. Due to the steady-state nature of the calculations and the effective proposed coupling strategy, these calculations remain computationally efficient while providing first-order approximations of the interplay between poro-mechanics and hydrodynamics, as we demonstrate through a series of case studies. This thesis also introduces a new uncertainty quantification workflow using the proposed poro-mechanical informed flow diagnostics and proxy models. These computationally efficient calculations allow us to quickly screen poro-mechanics and assess a broader range of geological, petrophysical, and mechanical uncertainties to rank, compare, and cluster a large ensemble of models to select representative candidates for more detailed full-physics coupled reservoir simulations.James Watt Scholarshi

    Proceedings of the Resilient Materials 4 Life 2020 (RM4L2020) International Conference

    Get PDF
    The abstracts and posters appearing in this book comprise the proceedings of the RM4L2020 International Conference, held between the 20th and 22nd of September 2021. The posters presented reflect the authors’ opinions and are published as presented and without change (formatting and minor editing expected). Their inclusion in this publication does not necessarily constitute endorsement by the editors, RM4L, or Cardiff University

    Exploring the adoption of a conceptual data analytics framework for subsurface energy production systems: a study of predictive maintenance, multi-phase flow estimation, and production optimization

    Get PDF
    Als die Technologie weiter fortschreitet und immer stärker in der Öl- und Gasindustrie integriert wird, steht eine enorme Menge an Daten in verschiedenen Wissenschaftsdisziplinen zur Verfügung, die neue Möglichkeiten bieten, informationsreiche und handlungsorientierte Informationen zu gewinnen. Die Konvergenz der digitalen Transformation mit der Physik des Flüssigkeitsflusses durch poröse Medien und Pipeline hat die Entwicklung und Anwendung von maschinellem Lernen (ML) vorangetrieben, um weiteren Mehrwert aus diesen Daten zu gewinnen. Als Folge hat sich die digitale Transformation und ihre zugehörigen maschinellen Lernanwendungen zu einem neuen Forschungsgebiet entwickelt. Die Transformation von Brownfields in digitale Ölfelder kann bei der Energieproduktion helfen, indem verschiedene Ziele erreicht werden, einschließlich erhöhter betrieblicher Effizienz, Produktionsoptimierung, Zusammenarbeit, Datenintegration, Entscheidungsunterstützung und Workflow-Automatisierung. Diese Arbeit zielt darauf ab, ein Rahmenwerk für diese Anwendungen zu präsentieren, insbesondere durch die Implementierung virtueller Sensoren, Vorhersageanalytik mithilfe von Vorhersagewartung für die Produktionshydraulik-Systeme (mit dem Schwerpunkt auf elektrischen Unterwasserpumpen) und präskriptiven Analytik für die Produktionsoptimierung in Dampf- und Wasserflutprojekten. In Bezug auf virtuelle Messungen ist eine genaue Schätzung von Mehrphasenströmen für die Überwachung und Verbesserung von Produktionsprozessen entscheidend. Diese Studie präsentiert einen datengetriebenen Ansatz zur Berechnung von Mehrphasenströmen mithilfe von Sensormessungen in elektrischen untergetauchten Pumpbrunnen. Es wird eine ausführliche exploratorische Datenanalyse durchgeführt, einschließlich einer Ein Variablen Studie der Zielausgänge (Flüssigkeitsrate und Wasseranteil), einer Mehrvariablen-Studie der Beziehungen zwischen Eingaben und Ausgaben sowie einer Datengruppierung basierend auf Hauptkomponentenprojektionen und Clusteralgorithmen. Feature Priorisierungsexperimente werden durchgeführt, um die einflussreichsten Parameter in der Vorhersage von Fließraten zu identifizieren. Die Modellvergleich erfolgt anhand des mittleren absoluten Fehlers, des mittleren quadratischen Fehlers und des Bestimmtheitskoeffizienten. Die Ergebnisse zeigen, dass die CNN-LSTM-Netzwerkarchitektur besonders effektiv bei der Zeitreihenanalyse von ESP-Sensordaten ist, da die 1D-CNN-Schichten automatisch Merkmale extrahieren und informative Darstellungen von Zeitreihendaten erzeugen können. Anschließend wird in dieser Studie eine Methodik zur Umsetzung von Vorhersagewartungen für künstliche Hebesysteme, insbesondere bei der Wartung von Elektrischen Untergetauchten Pumpen (ESP), vorgestellt. Conventional maintenance practices for ESPs require extensive resources and manpower, and are often initiated through reactive monitoring of multivariate sensor data. Um dieses Problem zu lösen, wird die Verwendung von Hauptkomponentenanalyse (PCA) und Extreme Gradient Boosting Trees (XGBoost) zur Analyse von Echtzeitsensordaten und Vorhersage möglicher Ausfälle in ESPs eingesetzt. PCA wird als unsupervised technique eingesetzt und sein Ausgang wird weiter vom XGBoost-Modell für die Vorhersage des Systemstatus verarbeitet. Das resultierende Vorhersagemodell hat gezeigt, dass es Signale von möglichen Ausfällen bis zu sieben Tagen im Voraus bereitstellen kann, mit einer F1-Bewertung größer als 0,71 im Testset. Diese Studie integriert auch Model-Free Reinforcement Learning (RL) Algorithmen zur Unterstützung bei Entscheidungen im Rahmen der Produktionsoptimierung. Die Aufgabe, die optimalen Injektionsstrategien zu bestimmen, stellt Herausforderungen aufgrund der Komplexität der zugrundeliegenden Dynamik, einschließlich nichtlinearer Formulierung, zeitlicher Variationen und Reservoirstrukturheterogenität. Um diese Herausforderungen zu bewältigen, wurde das Problem als Markov-Entscheidungsprozess reformuliert und RL-Algorithmen wurden eingesetzt, um Handlungen zu bestimmen, die die Produktion optimieren. Die Ergebnisse zeigen, dass der RL-Agent in der Lage war, den Netto-Barwert (NPV) durch kontinuierliche Interaktion mit der Umgebung und iterative Verfeinerung des dynamischen Prozesses über mehrere Episoden signifikant zu verbessern. Dies zeigt das Potenzial von RL-Algorithmen, effektive und effiziente Lösungen für komplexe Optimierungsprobleme im Produktionsbereich zu bieten.As technology continues to advance and become more integrated in the oil and gas industry, a vast amount of data is now prevalent across various scientific disciplines, providing new opportunities to gain insightful and actionable information. The convergence of digital transformation with the physics of fluid flow through porous media and pipelines has driven the advancement and application of machine learning (ML) techniques to extract further value from this data. As a result, digital transformation and its associated machine-learning applications have become a new area of scientific investigation. The transformation of brownfields into digital oilfields can aid in energy production by accomplishing various objectives, including increased operational efficiency, production optimization, collaboration, data integration, decision support, and workflow automation. This work aims to present a framework of these applications, specifically through the implementation of virtual sensing, predictive analytics using predictive maintenance on production hydraulic systems (with a focus on electrical submersible pumps), and prescriptive analytics for production optimization in steam and waterflooding projects. In terms of virtual sensing, the accurate estimation of multi-phase flow rates is crucial for monitoring and improving production processes. This study presents a data-driven approach for calculating multi-phase flow rates using sensor measurements located in electrical submersible pumped wells. An exhaustive exploratory data analysis is conducted, including a univariate study of the target outputs (liquid rate and water cut), a multivariate study of the relationships between inputs and outputs, and data grouping based on principal component projections and clustering algorithms. Feature prioritization experiments are performed to identify the most influential parameters in the prediction of flow rates. Model comparison is done using the mean absolute error, mean squared error and coefficient of determination. The results indicate that the CNN-LSTM network architecture is particularly effective in time series analysis for ESP sensor data, as the 1D-CNN layers are capable of extracting features and generating informative representations of time series data automatically. Subsequently, the study presented herein a methodology for implementing predictive maintenance on artificial lift systems, specifically regarding the maintenance of Electrical Submersible Pumps (ESPs). Conventional maintenance practices for ESPs require extensive resources and manpower and are often initiated through reactive monitoring of multivariate sensor data. To address this issue, the study employs the use of principal component analysis (PCA) and extreme gradient boosting trees (XGBoost) to analyze real-time sensor data and predict potential failures in ESPs. PCA is utilized as an unsupervised technique and its output is further processed by the XGBoost model for prediction of system status. The resulting predictive model has been shown to provide signals of potential failures up to seven days in advance, with an F1 score greater than 0.71 on the test set. In addition to the data-driven modeling approach, The present study also in- corporates model-free reinforcement learning (RL) algorithms to aid in decision-making in production optimization. The task of determining the optimal injection strategy poses challenges due to the complexity of the underlying dynamics, including nonlinear formulation, temporal variations, and reservoir heterogeneity. To tackle these challenges, the problem was reformulated as a Markov decision process and RL algorithms were employed to determine actions that maximize production yield. The results of the study demonstrate that the RL agent was able to significantly enhance the net present value (NPV) by continuously interacting with the environment and iteratively refining the dynamic process through multiple episodes. This showcases the potential for RL algorithms to provide effective and efficient solutions for complex optimization problems in the production domain. In conclusion, this study represents an original contribution to the field of data-driven applications in subsurface energy systems. It proposes a data-driven method for determining multi-phase flow rates in electrical submersible pumped (ESP) wells utilizing sensor measurements. The methodology includes conducting exploratory data analysis, conducting experiments to prioritize features, and evaluating models based on mean absolute error, mean squared error, and coefficient of determination. The findings indicate that a convolutional neural network-long short-term memory (CNN-LSTM) network is an effective approach for time series analysis in ESPs. In addition, the study implements principal component analysis (PCA) and extreme gradient boosting trees (XGBoost) to perform predictive maintenance on ESPs and anticipate potential failures up to a seven-day horizon. Furthermore, the study applies model-free reinforcement learning (RL) algorithms to aid decision-making in production optimization and enhance net present value (NPV)

    Mining Safety and Sustainability I

    Get PDF
    Safety and sustainability are becoming ever bigger challenges for the mining industry with the increasing depth of mining. It is of great significance to reduce the disaster risk of mining accidents, enhance the safety of mining operations, and improve the efficiency and sustainability of development of mineral resource. This book provides a platform to present new research and recent advances in the safety and sustainability of mining. More specifically, Mining Safety and Sustainability presents recent theoretical and experimental studies with a focus on safety mining, green mining, intelligent mining and mines, sustainable development, risk management of mines, ecological restoration of mines, mining methods and technologies, and damage monitoring and prediction. It will be further helpful to provide theoretical support and technical support for guiding the normative, green, safe, and sustainable development of the mining industry

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version
    corecore