2,697 research outputs found

    Software Defined Application Delivery Networking

    Get PDF
    In this thesis we present the architecture, design, and prototype implementation details of AppFabric. AppFabric is a next generation application delivery platform for easily creating, managing and controlling massively distributed and very dynamic application deployments that may span multiple datacenters. Over the last few years, the need for more flexibility, finer control, and automatic management of large (and messy) datacenters has stimulated technologies for virtualizing the infrastructure components and placing them under software-based management and control; generically called Software-defined Infrastructure (SDI). However, current applications are not designed to leverage this dynamism and flexibility offered by SDI and they mostly depend on a mix of different techniques including manual configuration, specialized appliances (middleboxes), and (mostly) proprietary middleware solutions together with a team of extremely conscientious and talented system engineers to get their applications deployed and running. AppFabric, 1) automates the whole control and management stack of application deployment and delivery, 2) allows application architects to define logical workflows consisting of application servers, message-level middleboxes, packet-level middleboxes and network services (both, local and wide-area) composed over application-level routing policies, and 3) provides the abstraction of an application cloud that allows the application to dynamically (and automatically) expand and shrink its distributed footprint across multiple geographically distributed datacenters operated by different cloud providers. The architecture consists of a hierarchical control plane system called Lighthouse and a fully distributed data plane design (with no special hardware components such as service orchestrators, load balancers, message brokers, etc.) called OpenADN . The current implementation (under active development) consists of ~10000 lines of python and C code. AppFabric will allow applications to fully leverage the opportunities provided by modern virtualized Software-Defined Infrastructures. It will serve as the platform for deploying massively distributed, and extremely dynamic next generation application use-cases, including: Internet-of-Things/Cyber-Physical Systems: Through support for managing distributed gather-aggregate topologies common to most Internet-of-Things(IoT) and Cyber-Physical Systems(CPS) use-cases. By their very nature, IoT and CPS use cases are massively distributed and have different levels of computation and storage requirements at different locations. Also, they have variable latency requirements for their different distributed sites. Some services, such as device controllers, in an Iot/CPS application workflow may need to gather, process and forward data under near-real time constraints and hence need to be as close to the device as possible. Other services may need more computation to process aggregated data to drive long term business intelligence functions. AppFabric has been designed to provide support for such very dynamic, highly diversified and massively distributed application use-cases. Network Function Virtualization: Through support for heterogeneous workflows, application-aware networking, and network-aware application deployments, AppFabric will enable new partnerships between Application Service Providers (ASPs) and Network Service Providers (NSPs). An application workflow in AppFabric may comprise of application services, packet and message-level middleboxes, and network transport services chained together over an application-level routing substrate. The Application-level routing substrate allows policy-based service chaining where the application may specify policies for routing their application traffic over different services based on application-level content or context. Virtual worlds/multiplayer games: Through support for creating, managing and controlling dynamic and distributed application clouds needed by these applications. AppFabric allows the application to easily specify policies to dynamically grow and shrink the application\u27s footprint over different geographical sites, on-demand. Mobile Apps: Through support for extremely diversified and very dynamic application contexts typical of such applications. Also, AppFabric provides support for automatically managing massively distributed service deployment and controlling application traffic based on application-level policies. This allows mobile applications to provide the best Quality-of-Experience to its users without This thesis is the first to handle and provide a complete solution for such a complex and relevant architectural problem that is expected to touch each of our lives by enabling exciting new application use-cases that are not possible today. Also, AppFabric is a non-proprietary platform that is expected to spawn lots of innovations both in the design of the platform itself and the features it provides to applications. AppFabric still needs many iterations, both in terms of design and implementation maturity. This thesis is not the end of journey for AppFabric but rather just the beginning

    Modeling the Internet of Things: a simulation perspective

    Full text link
    This paper deals with the problem of properly simulating the Internet of Things (IoT). Simulating an IoT allows evaluating strategies that can be employed to deploy smart services over different kinds of territories. However, the heterogeneity of scenarios seriously complicates this task. This imposes the use of sophisticated modeling and simulation techniques. We discuss novel approaches for the provision of scalable simulation scenarios, that enable the real-time execution of massively populated IoT environments. Attention is given to novel hybrid and multi-level simulation techniques that, when combined with agent-based, adaptive Parallel and Distributed Simulation (PADS) approaches, can provide means to perform highly detailed simulations on demand. To support this claim, we detail a use case concerned with the simulation of vehicular transportation systems.Comment: Proceedings of the IEEE 2017 International Conference on High Performance Computing and Simulation (HPCS 2017

    Socio-Economic Mechanisms to Coordinate the Internet of Services: The Simulation Environment SimIS

    Get PDF
    Visions of 21st century information systems show highly specialized digital services and resources, which interact continuously and with a global reach. Especially with the emergence of technologies, such as the semantic web or software agents, intelligent services within these settings can be implemented, automatically communicating and negotiating over the Internet about digital resources without human intervention. Such environments will eventually realize the vision of an open and global Internet of Services (IoS). In this paper we present an agent-based simulation model and toolkit for the IoS: 'SimIS - Simulating an Internet of Services'. Employing SimIS, distributed management mechanisms and protocols can be investigated in a simulated IoS environment before their actual deployment.Multi-Agent Simulation, Internet, Simulation Tools

    Network-based business process management: embedding business logic in communications networks

    Get PDF
    Advanced Business Process Management (BPM) tools enable the decomposition of previously integrated and often ill-defined processes into re-usable process modules. These process modules can subsequently be distributed on the Internet over a variety of many different actors, each with their own specialization and economies-of-scale. The economic benefits of process specialization can be huge. However, how should such actors in a business network find, select, and control, the best partner for what part of the business process, in such a way that the best result is achieved? This particular management challenge requires more advanced techniques and tools in the enabling communications networks. An approach has been developed to embed business logic into the communications networks in order to optimize the allocation of business resources from a network point of view. Initial experimental results have been encouraging while at the same time demonstrating the need for more robust techniques in a future of massively distributed business processes.active networks;business process management;business protocols;embedded business logic;genetic algorithms;internet distributed process management;payment systems;programmable networks;resource optimization

    Attack-Surface Metrics, OSSTMM and Common Criteria Based Approach to “Composable Security” in Complex Systems

    Get PDF
    In recent studies on Complex Systems and Systems-of-Systems theory, a huge effort has been put to cope with behavioral problems, i.e. the possibility of controlling a desired overall or end-to-end behavior by acting on the individual elements that constitute the system itself. This problem is particularly important in the “SMART” environments, where the huge number of devices, their significant computational capabilities as well as their tight interconnection produce a complex architecture for which it is difficult to predict (and control) a desired behavior; furthermore, if the scenario is allowed to dynamically evolve through the modification of both topology and subsystems composition, then the control problem becomes a real challenge. In this perspective, the purpose of this paper is to cope with a specific class of control problems in complex systems, the “composability of security functionalities”, recently introduced by the European Funded research through the pSHIELD and nSHIELD projects (ARTEMIS-JU programme). In a nutshell, the objective of this research is to define a control framework that, given a target security level for a specific application scenario, is able to i) discover the system elements, ii) quantify the security level of each element as well as its contribution to the security of the overall system, and iii) compute the control action to be applied on such elements to reach the security target. The main innovations proposed by the authors are: i) the definition of a comprehensive methodology to quantify the security of a generic system independently from the technology and the environment and ii) the integration of the derived metrics into a closed-loop scheme that allows real-time control of the system. The solution described in this work moves from the proof-of-concepts performed in the early phase of the pSHIELD research and enrich es it through an innovative metric with a sound foundation, able to potentially cope with any kind of pplication scenarios (railways, automotive, manufacturing, ...)
    • …
    corecore