31,946 research outputs found

    Routing protocols and quality of services for security based applications using wireless video sensor networks

    Get PDF
    Wireless video sensor networks have been a hot topic in recent years; the monitoring capability is the central feature of the services offered by a wireless video sensor network can be classified into three major categories: monitoring, alerting, and information on-demand. These features have been applied to a large number of applications related to the environment (agriculture, water, forest and fire detection), military, buildings, health (elderly people and home monitoring), disaster relief, area and industrial monitoring. Security applications oriented toward critical infrastructures and disaster relief are very important applications that many countries have identified as critical in the near future. This paper aims to design a cross layer based protocol to provide the required quality of services for security related applications using wireless video sensor networks. Energy saving, delay and reliability for the delivered data are crucial in the proposed application. Simulation results show that the proposed cross layer based protocol offers a good performance in term of providing the required quality of services for the proposed application

    Water Quality Monitoring System Using Zigbee Based Wireless Sensor Network

    Get PDF
    The application of wireless sensor network (WSN) for a water quality monitoring is composed of a number of sensor nodes with a networking capability that can be deployed for an ad hoc or continuous monitoring purpose. The parameters involved in the water quality determination such as the pH level, turbidity and temperature is measured in the real time by the sensors that send the data to the base station or control/monitoring room. This paper proposes how such monitoring system can be setup emphasizing on the aspects of low cost, easy ad hoc installation and easy handling and maintenance. The use of wireless system for monitoring purpose will not only reduce the overall monitoring system cost in term of facilities setup and labor cost, but will also provide flexibility in term of distance or location. In this paper, the fundamental design and implementation of WSN featuring a high power transmission Zigbee based technology together with the IEEE 802.15.4 compatible transceiver is proposed. The developed platform is cost-effective and allows easy customization. Several preliminary results of measurement to evaluate the reliability and effectiveness of the system are also presented

    Integration of miniature, ultrasensitive chemical sensors in microfluidic devices

    Get PDF
    Simple construction, good detection limit1, very low power demand, and simple experimental setup coupled with miniaturization opportunities arising from solid-state format makes ISEs an excellent prospect for integration in autonomous sensing devices and ultimately their integration in large wireless chemo-sensing networks.2,3 Microfluidics, also known as “lab-on-a-chip” is an emerging technology that is changing the future of instrument design. Microfluidics enables small scale fluid control and analysis, allowing developing smaller, more cost-effective, and more powerful systems.4,5,6 We are working on development of miniature devices featuring sensitive yet simple sensors that could enable rapid access to important environmental information from in-situ deployed sensors, and thereby facilitate timely action to minimize the adverse impact of emerging incidents. Our work involves integration of ultra-sensitive yet simple chemical sensors into a microfluidic device that has integrated wireless communications capabilities. Our ultimate objective is to develop a microfluidic chip that will incorporate polymer-based lead-selective solid-state electrodes. We will test the series of developed chips for the best design to accommodate these sensors. Initially, we are targeting lead-selective sensors and their application to the monitoring of drinking and natural water quality. Our ultimate vision is the development of a microfluidic-based platform with fully integrated screen-printed solid-state ISEs, and the associated reference electrode, which will be suitable for use as a chemo-sensing component in a widely distributed wireless sensor network (WSN) for monitoring the quality of a fresh water system. A key challenge in the realization of this vision is to build in advanced system diagnostics, and particular, sensor status tests using simple electronic signals, in a manner similar to those used in physical transducers.7 In this way, it may be possible to assist in distinguishing sensor malfunction or signal artifacts from real events, even in relatively simple, low cost platforms

    Quality Driven Wireless Sensor Network

    Get PDF
    Wireless Sensor Network is a network consisting of numerous nodes that wirelessly transmit data packets through various routing protocols that it has been based on. In this paper, the networks and its classification has been explained. Various routing algorithms based on time, location of nodes, distribution of energy between them, etc. have been touched upon. There is a short description and final comparison between the various types of protocols so as to help in deciding which type of routing method should be used in a given network based on the requirements. Following the classification and comparison, there is a simulation for a wireless sensor network for various number and degree of nodes (to show compactness between nodes). Then analysis of various parameters like the shortest path, distance traversed by the path including all the mid-nodes, distance in units, number of messages traversed in one round of simulation, etc. are done using MATLAB. Due to their versatility, ease and efficiency in operation the wireless sensor networks find an extensive use in the modern world. Some of the common areas of their uses are process management, health care monitoring, area management, defense application, air pollution monitoring, forest fire detection, landslide detection, water quality monitoring, chemical agent detection, natural disaster prevention, data logging, etc. This diverse field of application makes the study and analysis of wireless sensor network one of the hottest topic in today’s world. In short, this thesis introduces one to various wireless routing methods and concentrates on one of the most important parameter for quality improvement i.e. path; which indirectly improvises the time

    The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks

    No full text
    The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is currently undertaken through a number of data acquisition methods from grab sampling to satellite based remote sensing of water bodies. Based on the surveyed sampling methods and their numerous limitations, it is proposed that wireless sensor networks (WSNs), despite their own limitations, are still very attractive and effective for real-time spatio-temporal data collection for WQM applications. WSNs have been employed for WQM of surface and ground water and catchments, and have been fundamental in advancing the knowledge of contaminants trends through their high resolution observations. However, these applications have yet to explore the implementation and impact of this technology for management and control decisions, to minimize and prevent individual stakeholder’s contributions, in an autonomous and dynamic manner. Here, the potential of WSN-controlled agricultural activities and different environmental compartments for integrated water quality management is presented and limitations of WSN in agriculture and WQM are identified. Finally, a case for collaborative networks at catchment scale is proposed for enabling cooperation among individually networked activities/stakeholders (farming activities, water bodies) for integrated water quality monitoring, control and management
    corecore