2,005 research outputs found

    A theoretical and computational basis for CATNETS

    Get PDF
    The main content of this report is the identification and definition of market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. These build the theoretical foundation for the work within the following two years of the CATNETS project. --Grid Computing

    A MDE-based optimisation process for Real-Time systems

    Get PDF
    The design and implementation of Real-Time Embedded Systems is now heavily relying on Model-Driven Engineering (MDE) as a central place to define and then analyze or implement a system. MDE toolchains are taking a key role as to gather most of functional and not functional properties in a central framework, and then exploit this information. Such toolchain is based on both 1) a modeling notation, and 2) companion tools to transform or analyse models. In this paper, we present a MDE-based process for system optimisation based on an architectural description. We first define a generic evaluation pipeline, define a library of elementary transformations and then shows how to use it through Domain-Specific Language to evaluate and then transform models. We illustrate this process on an AADL case study modeling a Generic Avionics Platform

    Theoretical and Computational Basis for Economical Ressource Allocation in Application Layer Networks - Annual Report Year 1

    Get PDF
    This paper identifies and defines suitable market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. --Grid Computing

    A tutorial on optimization for multi-agent systems

    Get PDF
    Research on optimization in multi-agent systems (MASs) has contributed with a wealth of techniques to solve many of the challenges arising in a wide range of multi-agent application domains. Multi-agent optimization focuses on casting MAS problems into optimization problems. The solving of those problems could possibly involve the active participation of the agents in a MAS. Research on multi-agent optimization has rapidly become a very technical, specialized field. Moreover, the contributions to the field in the literature are largely scattered. These two factors dramatically hinder access to a basic, general view of the foundations of the field. This tutorial is intended to ease such access by providing a gentle introduction to fundamental concepts and techniques on multi-agent optimization. © 2013 The Author.Peer Reviewe

    On Counterexample Guided Quantifier Instantiation for Synthesis in CVC4

    Full text link
    We introduce the first program synthesis engine implemented inside an SMT solver. We present an approach that extracts solution functions from unsatisfiability proofs of the negated form of synthesis conjectures. We also discuss novel counterexample-guided techniques for quantifier instantiation that we use to make finding such proofs practically feasible. A particularly important class of specifications are single-invocation properties, for which we present a dedicated algorithm. To support syntax restrictions on generated solutions, our approach can transform a solution found without restrictions into the desired syntactic form. As an alternative, we show how to use evaluation function axioms to embed syntactic restrictions into constraints over algebraic datatypes, and then use an algebraic datatype decision procedure to drive synthesis. Our experimental evaluation on syntax-guided synthesis benchmarks shows that our implementation in the CVC4 SMT solver is competitive with state-of-the-art tools for synthesis

    Context-aware counter abstraction

    Get PDF
    The trend towards multi-core computing has made concurrent software an important target of computer-aided verification. Unfortunately, Model Checkers for such software suffer tremendously from combinatorial state space explosion. We show how to apply counter abstraction to real-world concurrent programs to factor out redundancy due to thread replication. The traditional global state representation as a vector of local states is replaced by a vector of thread counters, one per local state. In practice, straightforward implementations of this idea are unfavorably sensitive to the number of local states. We present a novel symbolic exploration algorithm that avoids this problem by carefully scheduling which counters to track at any moment during the search. We have carried out experiments on Boolean programs, an abstraction promoted by the success of the Slam project. The experiments give evidence of the applicability of our method to realistic programs, and of the often huge savings obtained in comparison to plain symbolic state space exploration, and to exploration optimized by partial-order methods. To our knowledge, our tool marks the first implementation of counter abstraction to programs with non-trivial local state spaces, resulting in a Model Checker for concurrent Boolean programs that promises true scalabilit
    corecore