4,687 research outputs found

    Machine learning approach for detection of nonTor traffic

    Get PDF
    Intrusion detection has attracted a considerable interest from researchers and industry. After many years of research the community still faces the problem of building reliable and efficient intrusion detection systems (IDS) capable of handling large quantities of data with changing patterns in real time situations. The Tor network is popular in providing privacy and security to end user by anonymizing the identity of internet users connecting through a series of tunnels and nodes. This work identifies two problems; classification of Tor traffic and nonTor traffic to expose the activities within Tor traffic that minimizes the protection of users in using the UNB-CIC Tor Network Traffic dataset and classification of the Tor traffic flow in the network. This paper proposes a hybrid classifier; Artificial Neural Network in conjunction with Correlation feature selection algorithm for dimensionality reduction and improved classification performance. The reliability and efficiency of the propose hybrid classifier is compared with Support Vector Machine and naïve Bayes classifiers in detecting nonTor traffic in UNB-CIC Tor Network Traffic dataset. Experimental results show the hybrid classifier, ANN-CFS proved a better classifier in detecting nonTor traffic and classifying the Tor traffic flow in UNB-CIC Tor Network Traffic dataset

    Towards a Reliable Comparison and Evaluation of Network Intrusion Detection Systems Based on Machine Learning Approaches

    Get PDF
    Presently, we are living in a hyper-connected world where millions of heterogeneous devices are continuously sharing information in different application contexts for wellness, improving communications, digital businesses, etc. However, the bigger the number of devices and connections are, the higher the risk of security threats in this scenario. To counteract against malicious behaviours and preserve essential security services, Network Intrusion Detection Systems (NIDSs) are the most widely used defence line in communications networks. Nevertheless, there is no standard methodology to evaluate and fairly compare NIDSs. Most of the proposals elude mentioning crucial steps regarding NIDSs validation that make their comparison hard or even impossible. This work firstly includes a comprehensive study of recent NIDSs based on machine learning approaches, concluding that almost all of them do not accomplish with what authors of this paper consider mandatory steps for a reliable comparison and evaluation of NIDSs. Secondly, a structured methodology is proposed and assessed on the UGR'16 dataset to test its suitability for addressing network attack detection problems. The guideline and steps recommended will definitively help the research community to fairly assess NIDSs, although the definitive framework is not a trivial task and, therefore, some extra effort should still be made to improve its understandability and usability further

    Comparison of System Call Representations for Intrusion Detection

    Full text link
    Over the years, artificial neural networks have been applied successfully in many areas including IT security. Yet, neural networks can only process continuous input data. This is particularly challenging for security-related non-continuous data like system calls. This work focuses on four different options to preprocess sequences of system calls so that they can be processed by neural networks. These input options are based on one-hot encoding and learning word2vec or GloVe representations of system calls. As an additional option, we analyze if the mapping of system calls to their respective kernel modules is an adequate generalization step for (a) replacing system calls or (b) enhancing system call data with additional information regarding their context. However, when performing such preprocessing steps it is important to ensure that no relevant information is lost during the process. The overall objective of system call based intrusion detection is to categorize sequences of system calls as benign or malicious behavior. Therefore, this scenario is used to evaluate the different input options as a classification task. The results show, that each of the four different methods is a valid option when preprocessing input data, but the use of kernel modules only is not recommended because too much information is being lost during the mapping process.Comment: 12 pages, 1 figure, submitted to CISIS 201

    SCADA System Testbed for Cybersecurity Research Using Machine Learning Approach

    Full text link
    This paper presents the development of a Supervisory Control and Data Acquisition (SCADA) system testbed used for cybersecurity research. The testbed consists of a water storage tank's control system, which is a stage in the process of water treatment and distribution. Sophisticated cyber-attacks were conducted against the testbed. During the attacks, the network traffic was captured, and features were extracted from the traffic to build a dataset for training and testing different machine learning algorithms. Five traditional machine learning algorithms were trained to detect the attacks: Random Forest, Decision Tree, Logistic Regression, Naive Bayes and KNN. Then, the trained machine learning models were built and deployed in the network, where new tests were made using online network traffic. The performance obtained during the training and testing of the machine learning models was compared to the performance obtained during the online deployment of these models in the network. The results show the efficiency of the machine learning models in detecting the attacks in real time. The testbed provides a good understanding of the effects and consequences of attacks on real SCADA environmentsComment: E-Preprin

    In-depth comparative evaluation of supervised machine learning approaches for detection of cybersecurity threats

    Get PDF
    This paper describes the process and results of analyzing CICIDS2017, a modern, labeled data set for testing intrusion detection systems. The data set is divided into several days, each pertaining to different attack classes (Dos, DDoS, infiltration, botnet, etc.). A pipeline has been created that includes nine supervised learning algorithms. The goal was binary classification of benign versus attack traffic. Cross-validated parameter optimization, using a voting mechanism that includes five classification metrics, was employed to select optimal parameters. These results were interpreted to discover whether certain parameter choices were dominant for most (or all) of the attack classes. Ultimately, every algorithm was retested with optimal parameters to obtain the final classification scores. During the review of these results, execution time, both on consumerand corporate-grade equipment, was taken into account as an additional requirement. The work detailed in this paper establishes a novel supervised machine learning performance baseline for CICIDS2017

    Evaluation of Machine Learning Algorithms for Intrusion Detection System

    Full text link
    Intrusion detection system (IDS) is one of the implemented solutions against harmful attacks. Furthermore, attackers always keep changing their tools and techniques. However, implementing an accepted IDS system is also a challenging task. In this paper, several experiments have been performed and evaluated to assess various machine learning classifiers based on KDD intrusion dataset. It succeeded to compute several performance metrics in order to evaluate the selected classifiers. The focus was on false negative and false positive performance metrics in order to enhance the detection rate of the intrusion detection system. The implemented experiments demonstrated that the decision table classifier achieved the lowest value of false negative while the random forest classifier has achieved the highest average accuracy rate
    corecore