5,124 research outputs found

    Transportation mode recognition fusing wearable motion, sound and vision sensors

    Get PDF
    We present the first work that investigates the potential of improving the performance of transportation mode recognition through fusing multimodal data from wearable sensors: motion, sound and vision. We first train three independent deep neural network (DNN) classifiers, which work with the three types of sensors, respectively. We then propose two schemes that fuse the classification results from the three mono-modal classifiers. The first scheme makes an ensemble decision with fixed rules including Sum, Product, Majority Voting, and Borda Count. The second scheme is an adaptive fuser built as another classifier (including Naive Bayes, Decision Tree, Random Forest and Neural Network) that learns enhanced predictions by combining the outputs from the three mono-modal classifiers. We verify the advantage of the proposed method with the state-of-the-art Sussex-Huawei Locomotion and Transportation (SHL) dataset recognizing the eight transportation activities: Still, Walk, Run, Bike, Bus, Car, Train and Subway. We achieve F1 scores of 79.4%, 82.1% and 72.8% with the mono-modal motion, sound and vision classifiers, respectively. The F1 score is remarkably improved to 94.5% and 95.5% by the two data fusion schemes, respectively. The recognition performance can be further improved with a post-processing scheme that exploits the temporal continuity of transportation. When assessing generalization of the model to unseen data, we show that while performance is reduced - as expected - for each individual classifier, the benefits of fusion are retained with performance improved by 15 percentage points. Besides the actual performance increase, this work, most importantly, opens up the possibility for dynamically fusing modalities to achieve distinct power-performance trade-off at run time

    Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition

    Get PDF
    Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters’ influence on performance to provide insights about their optimisation
    • …
    corecore