385 research outputs found

    Volumetric MRI Reconstruction from 2D Slices in the Presence of Motion

    Get PDF
    Despite recent advances in acquisition techniques and reconstruction algorithms, magnetic resonance imaging (MRI) remains challenging in the presence of motion. To mitigate this, ultra-fast two-dimensional (2D) MRI sequences are often used in clinical practice to acquire thick, low-resolution (LR) 2D slices to reduce in-plane motion. The resulting stacks of thick 2D slices typically provide high-quality visualizations when viewed in the in-plane direction. However, the low spatial resolution in the through-plane direction in combination with motion commonly occurring between individual slice acquisitions gives rise to stacks with overall limited geometric integrity. In further consequence, an accurate and reliable diagnosis may be compromised when using such motion-corrupted, thick-slice MRI data. This thesis presents methods to volumetrically reconstruct geometrically consistent, high-resolution (HR) three-dimensional (3D) images from motion-corrupted, possibly sparse, low-resolution 2D MR slices. It focuses on volumetric reconstructions techniques using inverse problem formulations applicable to a broad field of clinical applications in which associated motion patterns are inherently different, but the use of thick-slice MR data is current clinical practice. In particular, volumetric reconstruction frameworks are developed based on slice-to-volume registration with inter-slice transformation regularization and robust, complete-outlier rejection for the reconstruction step that can either avoid or efficiently deal with potential slice-misregistrations. Additionally, this thesis describes efficient Forward-Backward Splitting schemes for image registration for any combination of differentiable (not necessarily convex) similarity measure and convex (not necessarily smooth) regularization with a tractable proximal operator. Experiments are performed on fetal and upper abdominal MRI, and on historical, printed brain MR films associated with a uniquely long-term study dating back to the 1980s. The results demonstrate the broad applicability of the presented frameworks to achieve robust reconstructions with the potential to improve disease diagnosis and patient management in clinical practice

    Point-Spread-Function-Aware Slice-to-Volume Registration: Application to Upper Abdominal MRI Super-Resolution

    Get PDF
    MR image acquisition of moving organs remains challenging despite the advances in ultra-fast 2D MRI sequences. Post-acquisition techniques have been proposed to increase spatial resolution a posteriori by combining acquired orthogonal stacks into a single, high-resolution (HR) volume. Current super-resolution techniques classically rely on a two-step procedure. The volumetric reconstruction step leverages a physical slice acquisition model. However, the motion correction step typically neglects the point spread function (PSF) information. In this paper, we propose a PSF-aware slice-to-volume registration approach and, for the first time, demonstrate the potential benefit of Super-Resolution for upper abdominal imaging. Our novel reconstruction pipeline takes advantage of different MR acquisitions clinically used in routine MR cholangiopancreatography studies to guide the registration. On evaluation of clinically relevant image information, our approach outperforms state-of-the-art reconstruction toolkits in terms of visual clarity and preservation of raw data information. Overall, we achieve promising results towards replacing currently required CT scans

    Novel Image Processing Methods for Improved Fetal Brain MRI

    Get PDF
    Fetal magnetic resonance imaging (MRI) has been increasingly used as a powerful complement imaging modality to ultrasound imaging (US) for the clinical evaluation of prenatal abnormalities. Specifically, clinical application of fetal MRI has been significantly improved in the nineties by hardware and software advances with the development of ultrafast multi-slice T2-weighted (T2w) acquisition sequences able to freeze the unpredictable fetal motion and provide excellent soft-tissue contrast. Fetal motion is indeed the major challenge in fetal MRI and slice acquisition time should be kept as short as possible. As a result, typical fetal MRI examination involves the acquisition of a set of orthogonally planned scans of thick two-dimensional slices, largely free of intra-slice motion artifacts. The poor resolution in the slice-select dimension as well as possible motion occurring between slices limits further quantitative data analysis, which is the key for a better understanding of the developing brain but also the key for the determination of operator-independent biomarkers that might significantly facilitate fetal diagnosis and prognosis. To this end, several research groups have developed in the past ten years advanced image processing methods, often denoted by motion-robust super-resolution (SR) techniques, to reconstruct from a set of clinical low-resolution (LR) scans, a high-resolution (HR) motion-free volume. SR problem is usually modeled as a linear inverse problem describing the imaging degradation due to acquisition and fetal motion. Typically, such approaches consist in iterating between slice motion estimation that estimates the motion parameters and SR that recovers the HR image given the estimated degradation model. This thesis focuses on the development of novel advanced image processing methods, which have enabled the design of a completely automated reconstruction pipeline for fetal MRI. The proposed techniques help in improving state-of-the-art fetal MRI reconstruction in terms of efficiency, robustness and minimized user-interactions, with the ultimate goal of being translated to the clinical environment. The first part focuses on the development of a more efficient Total Variation (TV)-regularized optimization algorithm for the SR problem. The algorithm uses recent advances in convex optimization with a novel adaptive regularization strategy to offer simultaneously fast, accurate and robust solutions to the fetal image recovery problem. Extensive validations on both simulated fetal and real clinical data show the proposed algorithm is highly robust in front of motion artifacts and that it offers the best trade-off between speed and accuracy for fetal MRI recovery as in comparison with state-of-the art methods. The second part focuses on the development of a novel automatic brain localization and extraction approach based on template-to-slice block matching and deformable slice-totemplate registration. Asmost fetal brain MRI reconstruction algorithms rely only on brain tissue-relevant voxels of low-resolution (LR) images to enhance the quality of inter-slice motion correction and image reconstruction, the fetal brain needs to be localized and extracted as a first step. These tasks generally necessitate user interaction, manually or semi-automatically done. Our methods have enabled the design of completely automated reconstruction pipeline that involves intensity normalization, inter-slice motion estimation, and super-resolution. Quantitative evaluation on clinical MRI scans shows that our approach produces brain masks that are very close to manually drawn brain masks, and ratings performed by two expert observers show that the proposed pipeline achieves similar reconstruction quality to reference reconstruction based on manual slice-by-slice brain extraction without any further effort. The third part investigates the possibility of automatic cortical folding quantification, one of the best biomarkers of brain maturation, by combining our automatic reconstruction pipeline with a state-of-the-art fetal brain tissue segmentation method and existing automated tools provided for adult brain’s cortical folding quantification. Results indicate that our reconstruction pipeline can provide HR MR images with sufficient quality that enable the use of surface tessellation and active surface algorithms similar to those developed for adults to extract meaningful information about fetal brain maturation. Finally, the last part presents new methodological improvements of the reconstruction pipeline aiming at improving the quality of the image for quantitative data analysis, whose accuracy is highly dependent on the quality and resolution of the reconstructed image. In particular, it presents a more consistent and global magnetic bias field correction method which takes advantage of the super-resolution framework to provide a final reconstructed image quasi free of the smooth bias field. Then, it presents a new TV SR algorithm that uses the Huber norm in the data fidelity term to be more robust to non-Gaussian outliers. It also presents the design of a novel joint reconstruction-segmentation framework and the development of a novel TV SR algorithm driven by segmentation to produce images with enhanced edge information that could ultimately improve their segmentation. Finally, it preliminary investigates the capability of increasing the resolution in the in-plane dimensions using SR to ultimately reduce the partial volume effect

    Highly efficient MRI through multi-shot echo planar imaging

    Full text link
    Multi-shot echo planar imaging (msEPI) is a promising approach to achieve high in-plane resolution with high sampling efficiency and low T2* blurring. However, due to the geometric distortion, shot-to-shot phase variations and potential subject motion, msEPI continues to be a challenge in MRI. In this work, we introduce acquisition and reconstruction strategies for robust, high-quality msEPI without phase navigators. We propose Blip Up-Down Acquisition (BUDA) using interleaved blip-up and -down phase encoding, and incorporate B0 forward-modeling into Hankel structured low-rank model to enable distortion- and navigator-free msEPI. We improve the acquisition efficiency and reconstruction quality by incorporating simultaneous multi-slice acquisition and virtual-coil reconstruction into the BUDA technique. We further combine BUDA with the novel RF-encoded gSlider acquisition, dubbed BUDA-gSlider, to achieve rapid high isotropic-resolution MRI. Deploying BUDA-gSlider with model-based reconstruction allows for distortion-free whole-brain 1mm isotropic T2 mapping in about 1 minute. It also provides whole-brain 1mm isotropic diffusion imaging with high geometric fidelity and SNR efficiency. We finally incorporate sinusoidal wave gradients during the EPI readout to better use coil sensitivity encoding with controlled aliasing.Comment: 13 pages, 10 figure

    Increasing the Analytical Accessibility of Multishell and Diffusion Spectrum Imaging Data Using Generalized Q-Sampling Conversion

    Full text link
    Many diffusion MRI researchers, including the Human Connectome Project (HCP), acquire data using multishell (e.g., WU-Minn consortium) and diffusion spectrum imaging (DSI) schemes (e.g., USC-Harvard consortium). However, these data sets are not readily accessible to high angular resolution diffusion imaging (HARDI) analysis methods that are popular in connectomics analysis. Here we introduce a scheme conversion approach that transforms multishell and DSI data into their corresponding HARDI representations, thereby empowering HARDI-based analytical methods to make use of data acquired using non-HARDI approaches. This method was evaluated on both phantom and in-vivo human data sets by acquiring multishell, DSI, and HARDI data simultaneously, and comparing the converted HARDI, from non-HARDI methods, with the original HARDI data. Analysis on the phantom shows that the converted HARDI from DSI and multishell data strongly predicts the original HARDI (correlation coefficient > 0.9). Our in-vivo study shows that the converted HARDI can be reconstructed by constrained spherical deconvolution, and the fiber orientation distributions are consistent with those from the original HARDI. We further illustrate that our scheme conversion method can be applied to HCP data, and the converted HARDI do not appear to sacrifice angular resolution. Thus this novel approach can benefit all HARDI-based analysis approaches, allowing greater analytical accessibility to non-HARDI data, including data from the HCP

    Advanced parallel magnetic resonance imaging methods with applications to MR spectroscopic imaging

    Get PDF
    Parallel magnetic resonance imaging offers a framework for acceleration of conventional MRI encoding using an array of receiver coils with spatially-varying sensitivities. Novel encoding and reconstruction techniques for parallel MRI are investigated in this dissertation. The main goal is to improve the actual reconstruction methods and to develop new approaches for massively parallel MRI systems that take advantage of the higher information content provided by the large number of small receivers. A generalized forward model and inverse reconstruction with regularization for parallel MRI with arbitrary k-space sub-sampling is developed. Regularization methods using the singular value decomposition of the encoding matrix and pre-conditioning of the forward model are proposed to desensitize the solution from data noise and model errors. Variable density k-space sub-sampling is presented to improve the reconstruction with the common uniform sub-sampling. A novel method for massively parallel MRI systems named Superresolution Sensitivity Encoding (SURE-SENSE) is proposed where acceleration is performed by acquiring the low spatial resolution representation of the object being imaged and the stronger sensitivity variation from small receiver coils is used to perform intra-pixel reconstruction. SURE-SENSE compares favorably the performance of standard SENSE reconstruction for low spatial resolution imaging such as spectroscopic imaging. The methods developed in this dissertation are applied to Proton Echo Planar Spectroscopic Imaging (PEPSI) for metabolic imaging in human brain with high spatial and spectral resolution in clinically feasible acquisition times. The contributions presented in this dissertation are expected to provide methods that substantially enhance the utility of parallel MRI for clinical research and to offer a framework for fast MRSI of human brain with high spatial and spectral resolution
    corecore