247 research outputs found

    Application of Tauberian Theorem to the Exponential Decay of the Tail Probability of a Random Variable

    Full text link
    We give a sufficient condition for the exponential decay of the tail probability of a non-negative random variable. We consider the Laplace-Stieltjes transform of the probability distribution function of the random variable. We present a theorem, according to which if the abscissa of convergence of the LS transform is negative finite and the real point on the axis of convergence is a pole of the LS transform, then the tail probability decays exponentially. For the proof of the theorem, we extend and apply so-called a finite form of Ikehara's complex Tauberian theorem by Graham-Vaaler.Comment: 22pages, 1 figure, submitted to IEEE Transactions on Information Theor

    Geometrically stopped Markovian random growth processes and Pareto tails

    Full text link
    Many empirical studies document power law behavior in size distributions of economic interest such as cities, firms, income, and wealth. One mechanism for generating such behavior combines independent and identically distributed Gaussian additive shocks to log-size with a geometric age distribution. We generalize this mechanism by allowing the shocks to be non-Gaussian (but light-tailed) and dependent upon a Markov state variable. Our main results provide sharp bounds on tail probabilities, a simple equation determining Pareto exponents, and comparative statics. We present two applications: we show that (i) the tails of the wealth distribution in a heterogeneous-agent dynamic general equilibrium model with idiosyncratic investment risk are Paretian, and (ii) a random growth model for the population dynamics of Japanese municipalities is consistent with the observed Pareto exponent but only after allowing for Markovian dynamics

    Large deviations for the local times of a random walk among random conductances

    Get PDF
    We derive an annealed large deviation principle for the normalised local times of a continuous-time random walk among random conductances in a finite domain in Zd\Z^d in the spirit of Donsker-Varadhan \cite{DV75}. We work in the interesting case that the conductances may assume arbitrarily small values. Thus, the underlying picture of the principle is a joint strategy of small values of the conductances and large holding times of the walk. The speed and the rate function of our principle are explicit in terms of the lower tails of the conductance distribution. As an application, we identify the logarithmic asymptotics of the lower tails of the principal eigenvalue of the randomly perturbed negative Laplace operator in the domain.Comment: 12 page

    Species lifetime distribution for simple models of ecologies

    Full text link
    Interpretation of empirical results based on a taxa's lifetime distribution shows apparently conflicting results. Species' lifetime is reported to be exponentially distributed, whereas higher order taxa, such as families or genera, follow a broader distribution, compatible with power law decay. We show that both these evidences are consistent with a simple evolutionary model that does not require specific assumptions on species interaction. The model provides a zero-order description of the dynamics of ecological communities and its species lifetime distribution can be computed exactly. Different behaviors are found: an initial t−3/2t^{-3/2} power law, emerging from a random walk type of dynamics, which crosses over to a steeper t−2t^{-2} branching process-like regime and finally is cutoff by an exponential decay which becomes weaker and weaker as the total population increases. Sampling effects can also be taken into account and shown to be relevant: if species in the fossil record were sampled according to the Fisher log-series distribution, lifetime should be distributed according to a t−1t^{-1} power law. Such variability of behaviors in a simple model, combined with the scarcity of data available, cast serious doubts on the possibility to validate theories of evolution on the basis of species lifetime data.Comment: 19 pages, 2 figure
    • …
    corecore