43 research outputs found

    Model order selection in multi-baseline interferometric radar systems

    Get PDF
    Synthetic aperture radar interferometry (InSAR) is a powerful technique to derive three-dimensional terrain images. Interest is growing in exploiting the advanced multi-baseline mode of InSAR to solve layover effects from complex orography, which generate reception of unexpected multicomponent signals that degrade imagery of both terrain radar reflectivity and height. This work addresses a few problems related to the implementation into interferometric processing of nonlinear algorithms for estimating the number of signal components, including a system trade-off analysis. Performance of various eigenvalues-based information-theoretic criteria (ITC) algorithms is numerically investigated under some realistic conditions. In particular, speckle effects from surface and volume scattering are taken into account as multiplicative noise in the signal model. Robustness to leakage of signal power into the noise eigenvalues and operation with a small number of looks are investigated. The issue of baseline optimization for detection is also addressed. The use of diagonally loaded ITC methods is then proposed as a tool for robust operation in the presence of speckle decorrelation. Finally, case studies of a nonuniform array are studied and recommendations for a proper combination of ITC methods and system configuration are given

    Approches tomographiques structurelles pour l'analyse du milieu urbain par tomographie SAR THR : TomoSAR

    No full text
    SAR tomography consists in exploiting multiple images from the same area acquired from a slightly different angle to retrieve the 3-D distribution of the complex reflectivity on the ground. As the transmitted waves are coherent, the desired spatial information (along with the vertical axis) is coded in the phase of the pixels. Many methods have been proposed to retrieve this information in the past years. However, the natural redundancies of the scene are generally not exploited to improve the tomographic estimation step. This Ph.D. presents new approaches to regularize the estimated reflectivity density obtained through SAR tomography by exploiting the urban geometrical structures.La tomographie SAR exploite plusieurs acquisitions d'une mĂȘme zone acquises d'un point de vue lĂ©gerement diffĂ©rent pour reconstruire la densitĂ© complexe de rĂ©flectivitĂ© au sol. Cette technique d'imagerie s'appuyant sur l'Ă©mission et la rĂ©ception d'ondes Ă©lectromagnĂ©tiques cohĂ©rentes, les donnĂ©es analysĂ©es sont complexes et l'information spatiale manquante (selon la verticale) est codĂ©e dans la phase. De nombreuse mĂ©thodes ont pu ĂȘtre proposĂ©es pour retrouver cette information. L'utilisation des redondances naturelles Ă  certains milieux n'est toutefois gĂ©nĂ©ralement pas exploitĂ©e pour amĂ©liorer l'estimation tomographique. Cette thĂšse propose d'utiliser l'information structurelle propre aux structures urbaines pour rĂ©gulariser les densitĂ©s de rĂ©flecteurs obtenues par cette technique

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings
    corecore