48 research outputs found

    Dynamic proofs of retrievability with low server storage

    Get PDF
    Proofs of Retrievability (PoRs) are protocols which allow a client to store data remotely and to efficiently ensure, via audits, that the entirety of that data is still intact. A dynamic PoR system also supports efficient retrieval and update of any small portion of the data. We propose new, simple protocols for dynamic PoR that are designed for practical efficiency, trading decreased persistent storage for increased server computation, and show in fact that this tradeoff is inherent via a lower bound proof of time-space for any PoR scheme. Notably, ours is the first dynamic PoR which does not require any special encoding of the data stored on the server, meaning it can be trivially composed with any database service or with existing techniques for encryption or redundancy. Our implementation and deployment on Google Cloud Platform demonstrates our solution is scalable: for example, auditing a 1TB file takes just less than 5 minutes and costs less than $0.08 USD. We also present several further enhancements, reducing the amount of client storage, or the communication bandwidth, or allowing public verifiability, wherein any untrusted third party may conduct an audit

    The data integrity problem and multi-layered document integrity

    Get PDF
    Data integrity is a fundamental aspect of computer security that has attracted much interest in recent decades. Despite a general consensus for the meaning of the problem, the lack of a formal definition has led to spurious claims such as "tamper proof", "prevent tampering", and "tamper protection", which are all misleading in the absence of a formal definition. Ashman recently proposed a new approach for protecting the integrity of a document that claims the ability to detect, locate, and correct tampering. If determining integrity is only part of the problem, then a more general notion of data integrity is needed. Furthermore, in the presence of a persistent tamperer, the problem is more concerned with maintaining and proving the integrity of data, rather than determining it. This thesis introduces a formal model for the more general notion of data integrity by providing a formal problem semantics for its sub-problems: detection, location, correction, and prevention. The model is used to reason about the structure of the data integrity problem and to prove some fundamental results concerning the security and existence of schemes that attempt to solve these sub-problems. Ashman's original multi-layered document integrity (MLDI) paper [1] is critically evaluated, and several issues are highlighted. These issues are investigated in detail, and a series of algorithms are developed to present the MLDI schemes. Several factors that determine the feasibility of Ashman's approach are identified in order to prove certain theoretical results concerning the efficacy of MLDI schemes

    The data integrity problem and multi-layered document integrity

    Get PDF
    Data integrity is a fundamental aspect of computer security that has attracted much interest in recent decades. Despite a general consensus for the meaning of the problem, the lack of a formal definition has led to spurious claims such as "tamper proof", "prevent tampering", and "tamper protection", which are all misleading in the absence of a formal definition. Ashman recently proposed a new approach for protecting the integrity of a document that claims the ability to detect, locate, and correct tampering. If determining integrity is only part of the problem, then a more general notion of data integrity is needed. Furthermore, in the presence of a persistent tamperer, the problem is more concerned with maintaining and proving the integrity of data, rather than determining it. This thesis introduces a formal model for the more general notion of data integrity by providing a formal problem semantics for its sub-problems: detection, location, correction, and prevention. The model is used to reason about the structure of the data integrity problem and to prove some fundamental results concerning the security and existence of schemes that attempt to solve these sub-problems. Ashman's original multi-layered document integrity (MLDI) paper [1] is critically evaluated, and several issues are highlighted. These issues are investigated in detail, and a series of algorithms are developed to present the MLDI schemes. Several factors that determine the feasibility of Ashman's approach are identified in order to prove certain theoretical results concerning the efficacy of MLDI schemes

    A Taxonomy of Blockchain Technologies: Principles of Identification and Classification

    Get PDF
    A comparative study across the most widely known blockchain technologies is conducted with a bottom-up approach. Blockchains are deconstructed into their building blocks. Each building block is then hierarchically classified into main and subcomponents. Then, varieties of the subcomponents are identified and compared. A taxonomy tree is used to summarise the study and provide a navigation tool across different blockchain architectural configurations

    A Framework for the Systematic Evaluation of Malware Forensic Tools

    Get PDF
    Following a series of high profile miscarriages of justice linked to questionable expert evidence, the post of the Forensic Science Regulator was created in 2008 with a remit to improve the standard of practitioner competences and forensic procedures. It has since moved to incorporate a greater level of scientific practice in these areas, as used in the production of expert evidence submitted to the UK Criminal Justice System. Accreditation to their codes of practice and conduct will become mandatory for all forensic practitioners by October 2017. A variety of challenges with expert evidence are explored and linked to a lack of a scientific methodology underpinning the processes followed. In particular, the research focuses upon investigations where malicious software (‘malware’) has been identified. A framework, called the ‘Malware Analysis Tool Evaluation Framework’ (MATEF), has been developed to address this lack of methodology to evaluate software tools used during investigations involving malware. A prototype implementation of the framework was used to evaluate two tools against a population of over 350,000 samples of malware. Analysis of the findings indicated that the choice of tool could impact on the number of artefacts observed in malware forensic investigations as well as identifying the optimal execution time for a given tool when observing malware artefacts. Three different measures were used to evaluate the framework. The first of these evaluated the framework against the requirements and determined that these were largely met. Where the requirements were not met these are attributed to matters either outside scope or the fledgling nature of the research. Another measure used to evaluate the framework was to consider its performance in terms of speed and resource utilisation. This identified scope for improvement in terms of the time to complete a test and the need for more economical use of disk space. Finally, the framework provides a scientific means to evaluate malware analysis tools, hence addressing the Research Question subject to the level at which ground truth is established. A number of contributions are produced as the output of this work. First there is confirmation for the case for a lack of trusted practice in the field of malware forensics. Second, the MATEF itself, as it facilitates the production of empirical evidence of a tool’s ability to detect malware artefacts. A third contribution is a set of requirements for establishing trusted practice in the use of malware artefact detection tools. Finally, empirical evidence that supports both the notion that the choice of tool can impact on the number of artefacts observed in malware forensic investigations as well as identifying the optimal execution time for a given tool when observing malware artefacts

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue
    corecore