11 research outputs found

    A Comparative Study of Shearlet, Wavelet, Laplacian Pyramid, Curvelet, and Contourlet Transform to Defect Detection

    Get PDF
    This study presents a new approach based on shearlet transform for the first time to detect damages, and compare it with the wavelet, Laplacian pyramid, curvelet, and contourlet transforms to specify different types of defects in plate structures. Wavelet and Laplacian pyramid transforms have inferior performance to detect flaws with different multi-directions, such as curves, because of their basic element form, expressing the need for more efficient transforms. Therefore, some transforms, including curvelet and contourlet, have been evaluated so far for improving the performance of traditional transforms. Although these transforms have overcome the deficiencies of previous methods, they have a weakness in detecting several imperfections with various shapes in plate structures —one of the essential requirements that each transform should possess. In this study, we have used the shearlet transform that is used for the first time to detect identification and overcome all previous transform dysfunctionalities. In this regard, these transforms were applied to a four-fixed supported square plate with various defects. The obtained results revealed that the shearlet transform has the premier capability to demonstrate all kinds of damages compared to the other transforms, namely wavelet, Laplacian pyramid, curvelet, and contourlet. Also, the shearlet transform can be considered as an excellent and operational approach to demonstrate different forms of defects. Furthermore, the performance and correctness of the transforms have been verified via the experiment

    Lightweight CNN Models for Product Defect Detection with Edge Computing in Manufacturing Industries

    Get PDF
    Detecting product defects is one of the manufacturing industry's most essential processes in quality control. Human visual inspection for product defects is the traditional method employed in the industry. Nevertheless, it can be laborious, prone to human mistakes, and unreliable. Deep Learning-based Convolution Neural Networks (CNN) has been extensively used in fully automating product defect detection systems. However, real-time edge devices installed at the manufacturing site generally have limited computing capability and cannot run different CNN models. A lightweight CNN model is adopted in this scenario to find a balance between defect detection, model training time, memory consumption, computing time and efficiency. This work provides lightweight CNN models with transfer learning for product defect detection on fabric, surface, and casting datasets. We deployed the trained model to the NVIDIA Jetson Nano-kit edge device for detection speed with better simulation results in terms of accuracy, sensitivity rate, specificity rate, and F1 measure in the workplace context of the Manufacturing Industries

    A state-of-the-art review of non-destructive testing image fusion and critical insights on the inspection of aerospace composites towards sustainable maintenance repair operations

    Get PDF
    Non-destructive testing (NDT) of aerospace structures has gained significant interest, given its non-destructive and economic inspection nature enabling future sustainable aerospace maintenance repair operations (MROs). NDT has been applied to many different domains, and there is a number of such methods having their individual sensor technology characteristics, working principles, pros and cons. Increasingly, NDT approaches have been investigated alongside the use of data fusion with the aim of combining sensing information for improved inspection performance and more informative structural health condition outcomes for the relevant structure. Within this context, image fusion has been a particular focus. This review paper aims to provide a comprehensive survey of the recent progress and development trends in NDT-based image fusion. A particular aspect included in this work is providing critical insights on the reliable inspection of aerospace composites, given the weight-saving potential and superior mechanical properties of composites for use in aerospace structures and support for airworthiness. As the integration of NDT approaches for composite materials is rather limited in the current literature, some examples from non-composite materials are also presented as a means of providing insights into the fusion potential

    Inverse Mathematics Enhanced Neural Networks to Improve Defect Detection on Radiation Detectors

    Get PDF
    In this thesis, Convolutional Neural Networks (CNN) and Inverse Mathematic methods will be discussed for automated defect detection in materials that are used for radiation detectors. The first part of the thesis is dedicated to the literature review on the methods that are used. These include a general overview of Neural Networks, computer vision algorithms and Inverse Mathematics methods, such as wavelet transformations, or total variation denoising. In the Materials and Methods section, how these methods can be utilized in this problem setting will be examined. Results and Discussions part will reveal the outcomes and takeaways from the experiments. A focus of this thesis is put on the CNN architecture that fits the task best, how to optimize that chosen CNN architecture and discuss, how selected inputs created by Inverse Mathematics influence the Neural Network and it's performance. The results of this research reveal that the initially chosen Retina-Net is well suited for the task and the Inverse Mathematics methods utilized in this thesis provided useful insights

    Application of Artificial Intelligence for Surface Roughness Prediction of Additively Manufactured Components

    Get PDF
    Additive manufacturing has gained significant popularity from a manufacturing perspective due to its potential for improving production efficiency. However, ensuring consistent product quality within predetermined equipment, cost, and time constraints remains a persistent challenge. Surface roughness, a crucial quality parameter, presents difficulties in meeting the required standards, posing significant challenges in industries such as automotive, aerospace, medical devices, energy, optics, and electronics manufacturing, where surface quality directly impacts performance and functionality. As a result, researchers have given great attention to improving the quality of manufactured parts, particularly by predicting surface roughness using different parameters related to the manufactured parts. Artificial intelligence (AI) is one of the methods used by researchers to predict the surface quality of additively fabricated parts. Numerous research studies have developed models utilizing AI methods, including recent deep learning and machine learning approaches, which are effective in cost reduction and saving time, and are emerging as a promising technique. This paper presents the recent advancements in machine learning and AI deep learning techniques employed by researchers. Additionally, the paper discusses the limitations, challenges, and future directions for applying AI in surface roughness prediction for additively manufactured components. Through this review paper, it becomes evident that integrating AI methodologies holds great potential to improve the productivity and competitiveness of the additive manufacturing process. This integration minimizes the need for re-processing machined components and ensures compliance with technical specifications. By leveraging AI, the industry can enhance efficiency and overcome the challenges associated with achieving consistent product quality in additive manufacturing.publishedVersio

    Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

    Get PDF
    Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor .Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications
    corecore