4,778 research outputs found

    Web-based support for managing large collections of software artefacts

    Get PDF
    There has been a long history of CASE tool development, with an underlying software repository at the heart of most systems. Usually such tools, even the more recently web-based systems, are focused on supporting individual projects within an enterprise or across a number of distributed sites. Little support for maintaining large heterogeneous collections of software artefacts across a number of projects has been developed. Within the GENESIS project, this has been a key consideration in the development of the Open Source Component Artefact Repository (OSCAR). Its most recent extensions are explicitly addressing the provision of cross project global views of large software collections as well as historical views of individual artefacts within a collection. The long-term benefits of such support can only be realised if OSCAR is widely adopted and various steps to facilitate this are described

    Support for collaborative component-based software engineering

    Get PDF
    Collaborative system composition during design has been poorly supported by traditional CASE tools (which have usually concentrated on supporting individual projects) and almost exclusively focused on static composition. Little support for maintaining large distributed collections of heterogeneous software components across a number of projects has been developed. The CoDEEDS project addresses the collaborative determination, elaboration, and evolution of design spaces that describe both static and dynamic compositions of software components from sources such as component libraries, software service directories, and reuse repositories. The GENESIS project has focussed, in the development of OSCAR, on the creation and maintenance of large software artefact repositories. The most recent extensions are explicitly addressing the provision of cross-project global views of large software collections and historical views of individual artefacts within a collection. The long-term benefits of such support can only be realised if OSCAR and CoDEEDS are widely adopted and steps to facilitate this are described. This book continues to provide a forum, which a recent book, Software Evolution with UML and XML, started, where expert insights are presented on the subject. In that book, initial efforts were made to link together three current phenomena: software evolution, UML, and XML. In this book, focus will be on the practical side of linking them, that is, how UML and XML and their related methods/tools can assist software evolution in practice. Considering that nowadays software starts evolving before it is delivered, an apparent feature for software evolution is that it happens over all stages and over all aspects. Therefore, all possible techniques should be explored. This book explores techniques based on UML/XML and a combination of them with other techniques (i.e., over all techniques from theory to tools). Software evolution happens at all stages. Chapters in this book describe that software evolution issues present at stages of software architecturing, modeling/specifying, assessing, coding, validating, design recovering, program understanding, and reusing. Software evolution happens in all aspects. Chapters in this book illustrate that software evolution issues are involved in Web application, embedded system, software repository, component-based development, object model, development environment, software metrics, UML use case diagram, system model, Legacy system, safety critical system, user interface, software reuse, evolution management, and variability modeling. Software evolution needs to be facilitated with all possible techniques. Chapters in this book demonstrate techniques, such as formal methods, program transformation, empirical study, tool development, standardisation, visualisation, to control system changes to meet organisational and business objectives in a cost-effective way. On the journey of the grand challenge posed by software evolution, the journey that we have to make, the contributory authors of this book have already made further advances

    Separating Agent-Functioning and Inter-Agent Coordination by Activated Modules: The DECOMAS Architecture

    Full text link
    The embedding of self-organizing inter-agent processes in distributed software applications enables the decentralized coordination system elements, solely based on concerted, localized interactions. The separation and encapsulation of the activities that are conceptually related to the coordination, is a crucial concern for systematic development practices in order to prepare the reuse and systematic integration of coordination processes in software systems. Here, we discuss a programming model that is based on the externalization of processes prescriptions and their embedding in Multi-Agent Systems (MAS). One fundamental design concern for a corresponding execution middleware is the minimal-invasive augmentation of the activities that affect coordination. This design challenge is approached by the activation of agent modules. Modules are converted to software elements that reason about and modify their host agent. We discuss and formalize this extension within the context of a generic coordination architecture and exemplify the proposed programming model with the decentralized management of (web) service infrastructures

    ImmPort, toward repurposing of open access immunological assay data for translational and clinical research

    Get PDF
    Immunology researchers are beginning to explore the possibilities of reproducibility, reuse and secondary analyses of immunology data. Open-access datasets are being applied in the validation of the methods used in the original studies, leveraging studies for meta-analysis, or generating new hypotheses. To promote these goals, the ImmPort data repository was created for the broader research community to explore the wide spectrum of clinical and basic research data and associated findings. The ImmPort ecosystem consists of four components–Private Data, Shared Data, Data Analysis, and Resources—for data archiving, dissemination, analyses, and reuse. To date, more than 300 studies have been made freely available through the ImmPort Shared Data portal , which allows research data to be repurposed to accelerate the translation of new insights into discoveries

    Enhancing design learning using groupware

    Get PDF
    Project work is increasingly used to help engineering students integrate, apply and expand on knowledge gained from theoretical classes in their curriculum and expose students to 'real world' tasks [1]. To help facilitate this process, the department of Design, Manufacture and Engineering Management at the University of Strathclyde has developed a web±based groupware product called LauLima to help students store, share, structure and apply information when they are working in design teams. This paper describes a distributed design project class in which LauLima has been deployed in accordance with a Design Knowledge Framework that describes how design knowledge is generated and acquired in industry, suggesting modes of design teaching and learning. Alterations to the presentation, delivery and format of the class are discussed, and primarily relate to embedding a more rigorous form of project-based learning. The key educational changes introduced to the project were: the linking of information concepts to support the design process; a multidisciplinary team approach to coaching; and a distinction between formal and informal resource collections. The result was a marked improvement in student learning and ideation

    Distributed intelligent control and management (DICAM) applications and support for semi-automated development

    Get PDF
    We have recently begun a 4-year effort to develop a new technology foundation and associated methodology for the rapid development of high-performance intelligent controllers. Our objective in this work is to enable system developers to create effective real-time systems for control of multiple, coordinated entities in much less time than is currently required. Our technical strategy for achieving this objective is like that in other domain-specific software efforts: analyze the domain and task underlying effective performance, construct parametric or model-based generic components and overall solutions to the task, and provide excellent means for specifying, selecting, tailoring or automatically generating the solution elements particularly appropriate for the problem at hand. In this paper, we first present our specific domain focus, briefly describe the methodology and environment we are developing to provide a more regular approach to software development, and then later describe the issues this raises for the research community and this specific workshop

    DRIVER Technology Watch Report

    Get PDF
    This report is part of the Discovery Workpackage (WP4) and is the third report out of four deliverables. The objective of this report is to give an overview of the latest technical developments in the world of digital repositories, digital libraries and beyond, in order to serve as theoretical and practical input for the technical DRIVER developments, especially those focused on enhanced publications. This report consists of two main parts, one part focuses on interoperability standards for enhanced publications, the other part consists of three subchapters, which give a landscape picture of current and surfacing technologies and communities crucial to DRIVER. These three subchapters contain the GRID, CRIS and LTP communities and technologies. Every chapter contains a theoretical explanation, followed by case studies and the outcomes and opportunities for DRIVER in this field

    Open educational resources : conversations in cyberspace

    Get PDF
    172 p. : ill. ; 25 cm.Libro ElectrónicoEducation systems today face two major challenges: expanding the reach of education and improving its quality. Traditional solutions will not suffice, especially in the context of today's knowledge-intensive societies. The Open Educational Resources movement offers one solution for extending the reach of education and expanding learning opportunities. The goal of the movement is to equalize access to knowledge worldwide through openly and freely available online high-quality content. Over the course of two years, the international community came together in a series of online discussion forums to discuss the concept of Open Educational Resources and its potential. This publication makes the background papers and reports from those discussions available in print.--Publisher's description.A first forum : presenting the open educational resources (OER) movement. Open educational resources : an introductory note / Sally Johnstone -- Providing OER and related issues : an introductory note / Anne Margulies, ... [et al.] -- Using OER and related issues : in introductory note / Mohammed-Nabil Sabry, ... [et al.] -- Discussion highlights / Paul Albright -- Ongoing discussion. A research agenda for OER : discussion highlights / Kim Tucker and Peter Bateman -- A 'do-it-yourself' resource for OER : discussion highlights / Boris Vukovic -- Free and open source software (FOSS) and OER -- A second forum : discussing the OECD study of OER. Mapping procedures and users / Jan Hylén -- Why individuals and institutions share and use OER / Jan Hylén -- Discussion highlights / Alexa Joyce -- Priorities for action. Open educational resources : the way forward / Susan D'Antoni

    Software Supply Chain Development and Application

    Get PDF
    Motivation: Free Libre Open Source Software (FLOSS) has become a critical componentin numerous devices and applications. Despite its importance, it is not clear why FLOSS ecosystem works so well or if it may cease to function. Majority of existing research is focusedon studying a specific software project or a portion of an ecosystem, but FLOSS has not been investigated in its entirety. Such view is necessary because of the deep and complex technical and social dependencies that go beyond the core of an individual ecosystem and tight inter-dependencies among ecosystems within FLOSS.Aim: We, therefore, aim to discover underlying relations within and across FLOSS projects and developers in open source community, mitigate potential risks induced by the lack of such knowledge and enable systematic analysis over entire open source community through the lens of supply chain (SC).Method: We utilize concepts from an area of supply chains to model risks of FLOSS ecosystem. FLOSS, due to the distributed decision making of software developers, technical dependencies, and copying of the code, has similarities to traditional supply chain. Unlike in traditional supply chain, where data is proprietary and distributed among players, we aim to measure open-source software supply chain (OSSC) by operationalizing supply chain concept in software domain using traces reconstructed from version control data.Results: We create a very large and frequently updated collection of version control data in the entire FLOSS ecosystems named World of Code (WoC), that can completely cross-reference authors, projects, commits, blobs, dependencies, and history of the FLOSS ecosystems, and provide capabilities to efficiently correct, augment, query, and analyze that data. Various researches and applications (e.g., software technology adoption investigation) have been successfully implemented by leveraging the combination of WoC and OSSC.Implications: With a SC perspective in FLOSS development and the increased visibility and transparency in OSSC, our work provides potential opportunities for researchers to conduct wider and deeper studies on OSS over entire FLOSS community, for developers to build more robust software and for students to learn technologies more efficiently and improve programming skills
    • …
    corecore