145 research outputs found

    Universal in vivo Textural Model for Human Skin based on Optical Coherence Tomograms

    Full text link
    Currently, diagnosis of skin diseases is based primarily on visual pattern recognition skills and expertise of the physician observing the lesion. Even though dermatologists are trained to recognize patterns of morphology, it is still a subjective visual assessment. Tools for automated pattern recognition can provide objective information to support clinical decision-making. Noninvasive skin imaging techniques provide complementary information to the clinician. In recent years, optical coherence tomography has become a powerful skin imaging technique. According to specific functional needs, skin architecture varies across different parts of the body, as do the textural characteristics in OCT images. There is, therefore, a critical need to systematically analyze OCT images from different body sites, to identify their significant qualitative and quantitative differences. Sixty-three optical and textural features extracted from OCT images of healthy and diseased skin are analyzed and in conjunction with decision-theoretic approaches used to create computational models of the diseases. We demonstrate that these models provide objective information to the clinician to assist in the diagnosis of abnormalities of cutaneous microstructure, and hence, aid in the determination of treatment. Specifically, we demonstrate the performance of this methodology on differentiating basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) from healthy tissue

    Towards an Effective Imaging-Based Decision Support System for Skin Cancer

    Get PDF
    The usage of expert systems to aid in medical decisions has been employed since 1980s in distinct ap plications. With the high demands of medical care and limited human resources, these technologies are required more than ever. Skin cancer has been one of the pathologies with higher growth, which suf fers from lack of dermatology experts in most of the affected geographical areas. A permanent record of examination that can be further analyzed are medical imaging modalities. Most of these modalities were also assessed along with machine learning classification methods. It is the aim of this research to provide background information about skin cancer types, medical imaging modalities, data mining and machine learning methods, and their application on skin cancer imaging, as well as the disclosure of a proposal of a multi-imaging modality decision support system for skin cancer diagnosis and treatment assessment based in the most recent available technology. This is expected to be a reference for further implementation of imaging-based clinical support systems.info:eu-repo/semantics/publishedVersio

    Skin lesion detection and classification using convolutional neural network for deep feature extraction and support vector machine

    Get PDF
    Pigmented skin lesion identification is essential for detecting harmful pathologies related to this large organ, especially cancer. An analysis of the different methods and projects developed to diagnose these illnesses throughout the years showed that they had become very useful tools to identify melanoma, dermatofibroma, and basal cell carcinoma, among other types of cancer, are seen through the use of new computer-aided technologies. The most common diagnosis is based on dermoscopy and the dermatologist expertise that can improve accuracy with image detection techniques and classification by computer. Therefore, this study aims to develop software models able to detect and classify skin cancer. The following work is based on the use of dermoscopy images obtained from the HAM10000 dataset, a database with 10000 images previously tested and validated for research use. The main process is divided into three relevant parts: image segmentation, feature extraction (FE) using ten different pre-trained Convolutional Neural Networks (CNNs), and Support Vector Machine (SVM) to establish a classification model. According to the results, the models of classification performed very well using the image segmentation step, showing average accuracies between 80.67% (Xception) and 90% (Alexnet). In contrast to the process without using image segmentation, where no method reached 60%. AlexNet plus SVM model showed the minor running time and presented the higher accuracy rate (90.34%) for the correct identification and classification of the seven categories of cutaneous lesions taken into account

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis

    Get PDF
    Cancer research is a major public health priority in the world due to its high incidence, diversity and mortality. Despite great advances in this area during recent decades, the high incidence and lack of specialists have proven that one of the major challenges is to achieve early diagnosis. Improved early diagnosis, especially in developing countries, plays a crucial role in timely treatment and patient survival. Recent advances in scanner technology for the digitization of pathology slides and the growth of global initiatives to build databases for cancer research have enabled the emergence of digital pathology as a new approach to support pathology workflows. This has led to the development of many computational methods for automatic histopathology image analysis, which in turn has raised new computational challenges due to the high visual variability of histopathology slides, the difficulty in assessing the effectiveness of methods (considering the lack of annotated data from different pathologists and institutions), and the need of interpretable, efficient and feasible methods for practical use. On the other hand, machine learning techniques have focused on exploiting large databases to automatically extract and induce information and knowledge, in the form of patterns and rules, that allow to connect low-level content with its high-level meaning. Several approaches have emerged as opposed to traditional schemes based on handcrafted features for data representation, which nowadays are known as representation learning. The objective of this thesis is the exploration, development and validation of precise, interpretable and efficient computational machine learning methods for automatic representation learning from histopathology image databases to support diagnosis tasks of different types of cancer. The validation of the proposed methods during the thesis development allowed to corroborate their capability in several histopathology image analysis tasks of different types of cancer. These methods achieve good results in terms of accuracy, robustness, reproducibility, interpretability and feasibility suggesting their potential practical application towards translational and personalized medicine.Resumen. La investigación en cáncer es una de las principales prioridades de salud pública en el mundo debido a su alta incidencia, diversidad y mortalidad. A pesar de los grandes avances en el área en las últimas décadas, la alta incidencia y la falta de especialistas ha llevado a que una de las principales problemáticas sea lograr su detección temprana, en especial en países en vías de desarrollo, como quiera a que de ello depende las posibilidades de un tratamiento oportuno y las oportunidades de supervivencia de los pacientes. Los recientes avances en tecnología de escáneres para digitalización de láminas de patología y el crecimiento de iniciativas mundiales para la construcción de bases de datos para la investigación en cáncer, han permitido el surgimiento de la patología digital como un nuevo enfoque para soportar los flujos de trabajo en patología. Esto ha llevado al desarrollo de una gran variedad de métodos computacionales para el análisis automático de imágenes de histopatología, lo cual ha planteado nuevos desafíos computacionales debido a la alta variabilidad visual de las láminas de histopatología; la dificultad para evaluar la efectividad de los métodos por la falta de datos de diferentes instituciones que cuenten con anotaciones por parte de los patólogos, y la necesidad de métodos interpretables, eficientes y factibles para su uso práctico. Por otro lado, el aprendizaje de máquina se ha enfocado en explotar las grandes bases de datos para extraer e inducir de manera automática información y conocimiento, en forma de patrones y reglas, que permita conectar el contenido de bajo nivel con su significado. Diferentes técnicas han surgido en contraposición a los esquemas tradicionales basados en diseño manual de la representación de los datos, en lo que se conoce como aprendizaje de la representación. El propósito de esta tesis fue la exploración, desarrollo y validación de métodos computacionales de aprendizaje de máquina precisos, interpretables y eficientes a partir de bases de datos de imágenes de histopatología para el aprendizaje automático de la representación en tareas de apoyo al diagnóstico de distintos tipos de cáncer. La validación de los distintos métodos propuestos durante el desarrollo de la tesis permitieron corroborar la capacidad de cada uno de ellos en distintivas tareas de análisis de imágenes de histopatología, en diferentes tipos de cáncer, con buenos resultados en términos de exactitud, robustez, reproducibilidad, interpretabilidad y factibilidad, lo cual sugiere su potencial aplicación práctica hacia la medicina traslacional y personalizada.Doctorad

    Representación de imágenes de histopatología utilizada en tareas de análisis automático: estado del arte

    Get PDF
    This paper presents a review of the state-of-the-art in histopathology image representation used in automatic image analysis tasks. Automatic analysis of histopathology images is important for building computer-assisted diagnosis tools, automatic image enhancing systems and virtual microscopy systems, among other applications. Histopathology images have a rich mix of visual patterns with particularities that make them difficult to analyze. The paper discusses these particularities, the acquisition process and the challenges found when doing automatic analysis. Second an overview of recent works and methods addressed to deal with visual content representation in different automatic image analysis tasks is presented. Third an overview of applications of image representation methods in several medical domains and tasks is presented. Finally, the paper concludes with current trends of automatic analysis of histopathology images like digital pathology

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe
    corecore