6,534 research outputs found

    Application of Quantum Process Calculus to Higher Dimensional Quantum Protocols

    Full text link
    We describe the use of quantum process calculus to describe and analyze quantum communication protocols, following the successful field of formal methods from classical computer science. We have extended the quantum process calculus to describe d-dimensional quantum systems, which has not been done before. We summarise the necessary theory in the generalisation of quantum gates and Bell states and use the theory to apply the quantum process calculus CQP to quantum protocols, namely qudit teleportation and superdense coding.Comment: In Proceedings QPL 2012, arXiv:1407.842

    Bicategorical Semantics for Nondeterministic Computation

    Full text link
    We outline a bicategorical syntax for the interaction between public and private information in classical information theory. We use this to give high-level graphical definitions of encrypted communication and secret sharing protocols, including a characterization of their security properties. Remarkably, this makes it clear that the protocols have an identical abstract form to the quantum teleportation and dense coding procedures, yielding evidence of a deep connection between classical and quantum information processing. We also formulate public-key cryptography using our scheme. Specific implementations of these protocols as nondeterministic classical procedures are recovered by applying our formalism in a symmetric monoidal bicategory of matrices of relations.Comment: 21 page

    Low rank matrix recovery from rank one measurements

    Full text link
    We study the recovery of Hermitian low rank matrices XCn×nX \in \mathbb{C}^{n \times n} from undersampled measurements via nuclear norm minimization. We consider the particular scenario where the measurements are Frobenius inner products with random rank-one matrices of the form ajaja_j a_j^* for some measurement vectors a1,...,ama_1,...,a_m, i.e., the measurements are given by yj=tr(Xajaj)y_j = \mathrm{tr}(X a_j a_j^*). The case where the matrix X=xxX=x x^* to be recovered is of rank one reduces to the problem of phaseless estimation (from measurements, yj=x,aj2y_j = |\langle x,a_j\rangle|^2 via the PhaseLift approach, which has been introduced recently. We derive bounds for the number mm of measurements that guarantee successful uniform recovery of Hermitian rank rr matrices, either for the vectors aja_j, j=1,...,mj=1,...,m, being chosen independently at random according to a standard Gaussian distribution, or aja_j being sampled independently from an (approximate) complex projective tt-design with t=4t=4. In the Gaussian case, we require mCrnm \geq C r n measurements, while in the case of 44-designs we need mCrnlog(n)m \geq Cr n \log(n). Our results are uniform in the sense that one random choice of the measurement vectors aja_j guarantees recovery of all rank rr-matrices simultaneously with high probability. Moreover, we prove robustness of recovery under perturbation of the measurements by noise. The result for approximate 44-designs generalizes and improves a recent bound on phase retrieval due to Gross, Kueng and Krahmer. In addition, it has applications in quantum state tomography. Our proofs employ the so-called bowling scheme which is based on recent ideas by Mendelson and Koltchinskii.Comment: 24 page

    Quantum Picturalism

    Full text link
    The quantum mechanical formalism doesn't support our intuition, nor does it elucidate the key concepts that govern the behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are kin to the arrays of 0s and 1s of the early days of computer programming practice. In this review we present steps towards a diagrammatic `high-level' alternative for the Hilbert space formalism, one which appeals to our intuition. It allows for intuitive reasoning about interacting quantum systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports `automation'. It allows for a wider variety of underlying theories, and can be easily modified, having the potential to provide the required step-stone towards a deeper conceptual understanding of quantum theory, as well as its unification with other physical theories. Specific applications discussed here are purely diagrammatic proofs of several quantum computational schemes, as well as an analysis of the structural origin of quantum non-locality. The underlying mathematical foundation of this high-level diagrammatic formalism relies on so-called monoidal categories, a product of a fairly recent development in mathematics. These monoidal categories do not only provide a natural foundation for physical theories, but also for proof theory, logic, programming languages, biology, cooking, ... The challenge is to discover the necessary additional pieces of structure that allow us to predict genuine quantum phenomena.Comment: Commissioned paper for Contemporary Physics, 31 pages, 84 pictures, some colo

    Programming with Quantum Communication

    Get PDF
    This work develops a formal framework for specifying, implementing, and analysing quantum communication protocols. We provide tools for developing simple proofs and analysing programs which involve communication, both via quantum channels and exhibiting the LOCC (local operations, classical communication) paradigm
    corecore