200 research outputs found

    Failure Mode and Effect Analysis a Tool for Reliability Evaluation: Review

    Get PDF
    The purpose of safety designing is generally not on cost, but rather on saving life and nature, and consequently bargains just with specific risky system failure modes. High reliability levels are the consequence of good designing, scrupulousness and dependably never the aftereffect of re-dynamic failure management. Failure mode and effect analysis (FMEA) is a helpful technique analyzing engineering system reliability. The study focused on the use of FMEA technique to analyze the reliability of engineering equipment or components in selected areas such as: Wind Turbine component, Manufacturing Industries, Medical field and in evaluating the performances of Robots in different fields. The study showed the importance of FMEA as used widely in analyzing engineering equipment with regards to reliability

    Manufacturing Quality Function Deployment: Literature Review and Future Trends

    Get PDF
    A comprehensive review of the Quality Function Deployment (QFD) literature is made using extensive survey as a methodology. The most important results of the study are: (i) QFD modelling and applications are one-sided; prioritisation of technical attributes only maximise customer satisfaction without considering cost incurred (ii) we are still missing considerable knowledge about neural networks for predicting improvement measures in customer satisfaction (iii) further exploration of the subsequent phases (process planning and production planning) of QFD is needed (iv) more decision support systems are needed to automate QFD (v) feedbacks from customers are not accounted for in current studies

    Use of Quality Management Methods and Tools - a Systematic Review of the Literature

    Get PDF
    Bakalářská práce se skládá ze dvou částí: teoretické a praktické. V teoretické části práce popisujeme a charakterizujeme metody a nástroje managementu kvality. V praktické části jsme se zaměřili na shromáždění a analýzu publikací zabývajících se možnostmi využívání metod a nástrojů managementu kvality v různých ekonomických a sociálních oblastech. Pro rychlejší vyhledávání sledovaných publikací jsme využili dvě databáze: (www.webofscience.com) a IEE Xplore (https://ieeexplore.ieee.org).The Bachelor thesis consists of two parts: theoretical and practical. In the theoretical part of the work, we describe and characterize the methods and tools of quality management. In the practical part, we focused on gathering and analysing publications dealing with the possibilities of using quality management methods and tools in various economic and social areas. We used two databases for faster searches of monitored publications: (www.webofscience.com) and IEE Xplore(https://ieeexplore.ieee.org).639 - Katedra managementu kvalitydobř

    Strategic maintenance technique selection using combined quality function deployment, the analytic hierarchy process and the benefit of doubt approach

    Get PDF
    The business performance of manufacturing organizations depends on the reliability and productivity of equipment, machineries and entire manufacturing system. Therefore, the main role of maintenance and production managers is to keep manufacturing system always up by adopting most appropriate maintenance methods. There are alternative maintenance techniques for each machine, the selection of which depend on multiple factors. The contemporary approaches to maintenance technique selection emphasize on operational needs and economic factors only. As the reliability of production systems is the strategic intent of manufacturing organizations, maintenance technique selection must consider strategic factors of the concerned organization along with operational and economic criteria. The main aim of this research is to develop a method for selecting the most appropriate maintenance technique for manufacturing industry with the consideration of strategic, planning and operational criteria through involvement of relevant stakeholders. The proposed method combines quality function deployment (QFD), the analytic hierarchy process (AHP) and the benefit of doubt (BoD) approach. QFD links strategic intents of the organizations with the planning and operational needs, the AHP helps in prioritizing the criteria for selection and ranking the alternative maintenance techniques, and the BoD approach facilitates analysing robustness of the method through sensitivity analysis through setting the realistic limits for decision making. The proposed method has been applied to maintenance technique selection problems of three productive systems of a gear manufacturing organization in India to demonstrate its effectiveness

    Air Bubble Curtain Anchoring

    Get PDF
    To prevent salp (jellyfish) from entering Diablo Canyon Power Plant’s intake pipes, and ultimately having the plant shut down as a result, an air bubble curtain is anchored along the ocean floor for the duration of the salp swarm to create a barrier that prevents the salp and other debris from entering the intake. The curtain consists of four large air compressors connected to four parallel pipes with holes strategically drilled at various places along the length of the pipe. When the air compressors are turned on, a torrent of bubbles are shot out from the pipes which create a current which deters the salp from floating into the intake. As the ocean floor shifts with the current and tide, the pipes becomes unlevel and do not produce an adequate barrier of bubbles across the length of the pipe. To improve the bubble curtain, our team was tasked with creating a self-leveling anchor system to work with the existing air bubble curtain pipes. Over the course of the last academic year, we designed, built, and tested a model sized prototype of an anchoring concept that would keep the bubble curtain pipes level. The final design suspends the bubble curtain pipes from buoys. The concept uses the surface of the water to remain level, while a long tether to a ground anchor keeps it from floating freely. Through testing, we determined this design stays level independent of change in floor elevation. However, the effectiveness is dependent on the tide, and works best at low tide and in water with a low tide greater than 20 feet. We recommend designing this system for deeper sections of the intake bay, and implementing it to allow a constant upward slope in the bubble pipe. Before building a complete system, we recommend constructing and testing a partial system to insure it behaves as expected and withstands full-scale ocean conditions

    Expert Elicitation for Reliable System Design

    Full text link
    This paper reviews the role of expert judgement to support reliability assessments within the systems engineering design process. Generic design processes are described to give the context and a discussion is given about the nature of the reliability assessments required in the different systems engineering phases. It is argued that, as far as meeting reliability requirements is concerned, the whole design process is more akin to a statistical control process than to a straightforward statistical problem of assessing an unknown distribution. This leads to features of the expert judgement problem in the design context which are substantially different from those seen, for example, in risk assessment. In particular, the role of experts in problem structuring and in developing failure mitigation options is much more prominent, and there is a need to take into account the reliability potential for future mitigation measures downstream in the system life cycle. An overview is given of the stakeholders typically involved in large scale systems engineering design projects, and this is used to argue the need for methods that expose potential judgemental biases in order to generate analyses that can be said to provide rational consensus about uncertainties. Finally, a number of key points are developed with the aim of moving toward a framework that provides a holistic method for tracking reliability assessment through the design process.Comment: This paper commented in: [arXiv:0708.0285], [arXiv:0708.0287], [arXiv:0708.0288]. Rejoinder in [arXiv:0708.0293]. Published at http://dx.doi.org/10.1214/088342306000000510 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Role of Testing in Engineering Product Development Processes

    Get PDF
    Testing components, prototypes and products comprise essential, but time consuming and costly activities throughout the product development process particularly for complex iteratively designed products. The planning of testing is a critical challenge for these complex products for which market pressures demand shorter development times. A literature review identified that testing in the design process is a relatively under researched area. An extended case study in a diesel engine company was therefore conducted to explore how testing is integrated into the product development process and how different types of testing are planned across the stages of product development. The first part of this research study reports the empirical study. A framework resulting from this work is proposed which identifies the entities that characterise how testing should be planned. Motivated by needs of companies and research gaps identified in the literature review, the second part of this study focuses on three key problems for planning of testing in product development process: prioritisation of testing activities, scheduling of testing activities and managing the overlapping of testing and design activities. A method of integrating Quality Function Development (QFD) and Failure Modes and Effect Analysis (FMEA) for prioritising testing activities has been proposed, which can improve the current test prioritisation process of the company. A Multiple Domain Matrix (MDM) is created consisting of the components and associated tests of a product arranged in a format that allows the dependency and interrelationships between key parts and tests to be identified. This form of representation together with the proposed prioritisation method will improve the process of organising and scheduling the testing activities. The final study shows how virtual testing can mediate information flows between overlapping physical tests and (re)design and mitigate the risk associated with overlapping process. The study proposes a significant modification to the existing product development process configuration for design and testing. This reconfiguration makes explicit use of virtual testing which is an extension to Computer Aided Engineering. Virtual testing mirrors the testing process through modelling and simulation, as a distinct and significant activity. Virtual testing is used to (a) enhance and (b) replace some physical tests. Finally, this study assesses the costs and risks of overlaps and their amelioration through targeted virtual testing

    Six Sigma

    Get PDF
    In the new millennium the increasing expectation of customers and products complexity has forced companies to find new solutions and better alternatives to improve the quality of their products. Lean and Six Sigma methodology provides the best solutions to many problems and can be used as an accelerator in industry, business and even health care sectors. Due to its flexible nature, the Lean and Six Sigma methodology was rapidly adopted by many top and even small companies. This book provides the necessary guidance for selecting, performing and evaluating various procedures of Lean and Six Sigma. In the book you will find personal experiences in the field of Lean and Six Sigma projects in business, industry and health sectors

    Offshore wind cost optimisation: developing market strategies for the next generation of offshore wind farms

    Get PDF
    Offshore Wind has a vast potential to reduce carbon emissions and create economic prosperity, as well as increasing energy security of supply. For these potential resources to be exploited, and to build an offshore wind market fit for the future, the sector has to remain competitive, increase energy yield and reduce financing and technology uncertainties. The main focus of the industry is to create a market that drives innovation and competition, supporting growth and keeping costs down for consumers [1]. This research will assess the current market strategies of the offshore wind by organising the work into five parts: The first section will discuss the main drivers of the electricity market globally. The UK offshore wind market will be assessed to understand the main strategic drivers of the market. The third section will explore the innovative approaches used in advanced sectors, such as the automotive and aerospace industries. The review of the innovative approaches, identified the Quality Function Deployment, the Theory of Inventive Problem Solving and the Failure Mode and Effect Analysis methods as the most appropriate integrated methods that can assist the designer to consider all the interactions between technical solutions to a problem, and the necessary compromises that are required to meet the design requirements. The structured innovation approach is presented and tested in Section four, followed by the demonstration of the application of the method on a direct drive generator and floating subsystem. The results of the two case studies are discussed in the final section followed by a conclusion of the report
    corecore