3,494 research outputs found

    Report : review of the literature : maintenance and rehabilitation costs for roads (Risk-based Analysis)

    Get PDF
    Realistic estimates of short- and long-term (strategic) budgets for maintenance and rehabilitation of road assessment management should consider the stochastic characteristics of asset conditions of the road networks so that the overall variability of road asset data conditions is taken into account. The probability theory has been used for assessing life-cycle costs for bridge infrastructures by Kong and Frangopol (2003), Zayed et.al. (2002), Kong and Frangopol (2003), Liu and Frangopol (2004), Noortwijk and Frangopol (2004), Novick (1993). Salem 2003 cited the importance of the collection and analysis of existing data on total costs for all life-cycle phases of existing infrastructure, including bridges, road etc., and the use of realistic methods for calculating the probable useful life of these infrastructures (Salem et. al. 2003). Zayed et. al. (2002) reported conflicting results in life-cycle cost analysis using deterministic and stochastic methods. Frangopol et. al. 2001 suggested that additional research was required to develop better life-cycle models and tools to quantify risks, and benefits associated with infrastructures. It is evident from the review of the literature that there is very limited information on the methodology that uses the stochastic characteristics of asset condition data for assessing budgets/costs for road maintenance and rehabilitation (Abaza 2002, Salem et. al. 2003, Zhao, et. al. 2004). Due to this limited information in the research literature, this report will describe and summarise the methodologies presented by each publication and also suggest a methodology for the current research project funded under the Cooperative Research Centre for Construction Innovation CRC CI project no 2003-029-C

    State-of-research on performance indicators for bridge quality control and management

    Get PDF
    The present study provides a review of the most diffused technical and non-technical performance indicators adopted worldwide by infrastructure owners. This work, developed within the European COST Action TU 1406—“Quality specifications for roadway bridges, standardization at a European level,” aims to summarize the state-of-art maintenance scheduling practices adopted by bridge owners, mainly focusing on the identification and classification of the most diffused performance indicators (PIs). PIs are subdivided in technical and non-technical ones: for this latter subclass, PIs are classified in environmental, social and economic-targeted. The study aims to be a reference for researchers dealing with performance-based assessments and bridge maintenance and management practices.Peer ReviewedPostprint (published version

    Cost-Effectiveness of Stronger Woodframe Buildings

    Get PDF
    We examine the cost-effectiveness of improvements in woodframe buildings. These include retrofits, redesign measures, and improved quality in 19 hypothetical woodframe dwellings. We estimated cost-effectiveness for each improvement and each zip code in California. The dwellings were designed under the CUREE-Caltech Woodframe Project. Costs and seismic vulnerability were determined on a component-by-component basis using the Assembly Based Vulnerability method, within a nonlinear time-history structural-analysis framework and using full-size test specimen data. Probabilistic site hazard was calculated by zip code, considering site soil classification, and integrated with vulnerability to determine expected annualized repair cost. The approach provides insight into uncertainty of loss at varying shaking levels. We calculated present value of benefit to determine cost-effectiveness in terms of benefit-cost ratio (BCR). We find that one retrofit exhibits BCRs as high as 8, and is in excess of 1 in half of California zip codes. Four retrofit or redesign measures are cost-effective in at least some locations. Higher quality is estimated to save thousands of dollars per house. Results are illustrated by maps for the Los Angeles and San Francisco regions and are available for every zip code in California

    Real-time Loss Estimation for Instrumented Buildings

    Get PDF
    Motivation. A growing number of buildings have been instrumented to measure and record earthquake motions and to transmit these records to seismic-network data centers to be archived and disseminated for research purposes. At the same time, sensors are growing smaller, less expensive to install, and capable of sensing and transmitting other environmental parameters in addition to acceleration. Finally, recently developed performance-based earthquake engineering methodologies employ structural-response information to estimate probabilistic repair costs, repair durations, and other metrics of seismic performance. The opportunity presents itself therefore to combine these developments into the capability to estimate automatically in near-real-time the probabilistic seismic performance of an instrumented building, shortly after the cessation of strong motion. We refer to this opportunity as (near-) real-time loss estimation (RTLE). Methodology. This report presents a methodology for RTLE for instrumented buildings. Seismic performance is to be measured in terms of probabilistic repair cost, precise location of likely physical damage, operability, and life-safety. The methodology uses the instrument recordings and a Bayesian state-estimation algorithm called a particle filter to estimate the probabilistic structural response of the system, in terms of member forces and deformations. The structural response estimate is then used as input to component fragility functions to estimate the probabilistic damage state of structural and nonstructural components. The probabilistic damage state can be used to direct structural engineers to likely locations of physical damage, even if they are concealed behind architectural finishes. The damage state is used with construction cost-estimation principles to estimate probabilistic repair cost. It is also used as input to a quantified, fuzzy-set version of the FEMA-356 performance-level descriptions to estimate probabilistic safety and operability levels. CUREE demonstration building. The procedure for estimating damage locations, repair costs, and post-earthquake safety and operability is illustrated in parallel demonstrations by CUREE and Kajima research teams. The CUREE demonstration is performed using a real 1960s-era, 7-story, nonductile reinforced-concrete moment-frame building located in Van Nuys, California. The building is instrumented with 16 channels at five levels: ground level, floors 2, 3, 6, and the roof. We used the records obtained after the 1994 Northridge earthquake to hindcast performance in that earthquake. The building is analyzed in its condition prior to the 1994 Northridge Earthquake. It is found that, while hindcasting of the overall system performance level was excellent, prediction of detailed damage locations was poor, implying that either actual conditions differed substantially from those shown on the structural drawings, or inappropriate fragility functions were employed, or both. We also found that Bayesian updating of the structural model using observed structural response above the base of the building adds little information to the performance prediction. The reason is probably that Real-Time Loss Estimation for Instrumented Buildings ii structural uncertainties have only secondary effect on performance uncertainty, compared with the uncertainty in assembly damageability as quantified by their fragility functions. The implication is that real-time loss estimation is not sensitive to structural uncertainties (saving costly multiple simulations of structural response), and that real-time loss estimation does not benefit significantly from installing measuring instruments other than those at the base of the building. Kajima demonstration building. The Kajima demonstration is performed using a real 1960s-era office building in Kobe, Japan. The building, a 7-story reinforced-concrete shearwall building, was not instrumented in the 1995 Kobe earthquake, so instrument recordings are simulated. The building is analyzed in its condition prior to the earthquake. It is found that, while hindcasting of the overall repair cost was excellent, prediction of detailed damage locations was poor, again implying either that as-built conditions differ substantially from those shown on structural drawings, or that inappropriate fragility functions were used, or both. We find that the parameters of the detailed particle filter needed significant tuning, which would be impractical in actual application. Work is needed to prescribe values of these parameters in general. Opportunities for implementation and further research. Because much of the cost of applying this RTLE algorithm results from the cost of instrumentation and the effort of setting up a structural model, the readiest application would be to instrumented buildings whose structural models are already available, and to apply the methodology to important facilities. It would be useful to study under what conditions RTLE would be economically justified. Two other interesting possibilities for further study are (1) to update performance using readily observable damage; and (2) to quantify the value of information for expensive inspections, e.g., if one inspects a connection with a modeled 50% failure probability and finds that the connect is undamaged, is it necessary to examine one with 10% failure probability

    Effects of Steel and Polypropylene Fiber Addition on Interface Bond Strength between Normal Concrete Substrate andSelf-Compacting Concrete Topping

    Get PDF
    Based on facts that the composite action in semi-precast and strengthened structural system depends on the bond strength of the interface between concrete faces of different ages, this preliminary research is aimed to investigate effects of mixed polypropylene (PPF) and steel fiber (SF) addition on the hardened properties of Self-Compacting Concrete (SCC) and its bond strength when used as topping layer on normal concrete substrate. Effects of hybrid fiber addition on the hardened properties of SCC were investigated based on the compressive, splitting tensile and flexural strength of concrete specimens which is tested in 28 days of age. In the next step, the tensile and shear strength of the interface were evaluated using indirect splitting tensile and bi-surface shear test method. In this research, fiber addition were prepared using 1 kg/m PPF and various SF addition ranging from 15 kg/m3, 20 kg/m3, 25 kg/m3 and 30 kg/m3. Test results indicate that hybrid fiber addition does not affect the compressive strength significantly but it leads ositive improvement to the splitting tensile and flexural strength of hardened SCC and also improve the bond strength between SCC and normal concrete. Hybrid fiber addition of 1 kg/m3 PPF which is combined with 20 kg/m3 SF can be suggested as optimum composition for Hybrid Fiber Reinforced Self-Compacting Concrete (HyFRSCC) that will be used as topping or overlay material based on its hardened properties and interface strength

    Understanding Seismic Embankment Dam Behavior Through Case Histories

    Get PDF
    From the lessons learned from past earthquakes, it is noticed that modern embankment dams withstand the design earthquake without significant damages. In spite of this scenario it is important to prevent the occurrence of incidents and accidents of embankment dams during the earthquakes and so a deep understanding of the triggering factors is important. Well documents case histories from many parts of the world related embankment dams behaviour during recent earthquakes were carefully selected and are discussed. Based in the governed factors attention is given to the requirements for materials characterization, modelling, analysis, monitoring and safety evaluation. Ageing effects and rehabilitation of dams are analysed. The risks associated with dam projects are discussed. The benefits and concerns of dams are presented. It is important to develop new ways of thinking and strategies to address the future challenges
    • 

    corecore