46,260 research outputs found

    Activity Prediction of Business Process Instances using Deep Learning Techniques

    Get PDF
    The ability to predict the next activity of an ongoing case is becoming increasingly important in today’s businesses. Processes need to be monitored in real-life time in order to predict the remaining time of an open case, or also to be able to detect and prevent anomalies before they have a chance to impact the performances. Moreover, financial regulations and laws are changing, requiring companies' processes to be increasingly transparent. Process mining, supported by deep learning techniques, can improve the results of internal audit activities. The task of predicting the next activity can be used in this context to point out traces at risk that need to be monitored. In this way, the business is aware of the situation and, if possible, can take resolution actions in time. In recent years, this problem has been tackled using deep learning techniques, such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) neural networks, achieving consistent results. The first contribution of this thesis consists of a generation of a real-life process mining dataset based on the Purchase-to-Pay (P2P) process. The SAP tables structure is taken into account since it is the most popular management software in today's companies. We exploit the simulated dataset to explore modeling techniques and to define the type and the quantity of anomalies. The second contribution of the thesis is an investigation of LSTM neural networks architectures that exploit information from both temporal data and static features, applied to the previously generated dataset. The neural networks are then used to predict future events characteristics of running traces. Finally, real-life application of the results are discussed and future work proposals are presented.The ability to predict the next activity of an ongoing case is becoming increasingly important in today’s businesses. Processes need to be monitored in real-life time in order to predict the remaining time of an open case, or also to be able to detect and prevent anomalies before they have a chance to impact the performances. Moreover, financial regulations and laws are changing, requiring companies' processes to be increasingly transparent. Process mining, supported by deep learning techniques, can improve the results of internal audit activities. The task of predicting the next activity can be used in this context to point out traces at risk that need to be monitored. In this way, the business is aware of the situation and, if possible, can take resolution actions in time. In recent years, this problem has been tackled using deep learning techniques, such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) neural networks, achieving consistent results. The first contribution of this thesis consists of a generation of a real-life process mining dataset based on the Purchase-to-Pay (P2P) process. The SAP tables structure is taken into account since it is the most popular management software in today's companies. We exploit the simulated dataset to explore modeling techniques and to define the type and the quantity of anomalies. The second contribution of the thesis is an investigation of LSTM neural networks architectures that exploit information from both temporal data and static features, applied to the previously generated dataset. The neural networks are then used to predict future events characteristics of running traces. Finally, real-life application of the results are discussed and future work proposals are presented

    An Overview of the Use of Neural Networks for Data Mining Tasks

    Get PDF
    In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks

    Intelligent Financial Fraud Detection Practices: An Investigation

    Full text link
    Financial fraud is an issue with far reaching consequences in the finance industry, government, corporate sectors, and for ordinary consumers. Increasing dependence on new technologies such as cloud and mobile computing in recent years has compounded the problem. Traditional methods of detection involve extensive use of auditing, where a trained individual manually observes reports or transactions in an attempt to discover fraudulent behaviour. This method is not only time consuming, expensive and inaccurate, but in the age of big data it is also impractical. Not surprisingly, financial institutions have turned to automated processes using statistical and computational methods. This paper presents a comprehensive investigation on financial fraud detection practices using such data mining methods, with a particular focus on computational intelligence-based techniques. Classification of the practices based on key aspects such as detection algorithm used, fraud type investigated, and success rate have been covered. Issues and challenges associated with the current practices and potential future direction of research have also been identified.Comment: Proceedings of the 10th International Conference on Security and Privacy in Communication Networks (SecureComm 2014

    Application of support vector machines on the basis of the first Hungarian bankruptcy model

    Get PDF
    In our study we rely on a data mining procedure known as support vector machine (SVM) on the database of the first Hungarian bankruptcy model. The models constructed are then contrasted with the results of earlier bankruptcy models with the use of classification accuracy and the area under the ROC curve. In using the SVM technique, in addition to conventional kernel functions, we also examine the possibilities of applying the ANOVA kernel function and take a detailed look at data preparation tasks recommended in using the SVM method (handling of outliers). The results of the models assembled suggest that a significant improvement of classification accuracy can be achieved on the database of the first Hungarian bankruptcy model when using the SVM method as opposed to neural networks

    Automated ANN alerts : one step ahead with mobile support

    Get PDF
    In this paper, I examine the potential of mobile alerting services empowering investors to react quickly to critical market events. Therefore, an analysis of short-term (intraday) price effects is performed. I find abnormal returns to company announcements which are completed within a timeframe of minutes. To make use of these findings, these price effects are predicted using pre-defined external metrics and different estimation methodologies. Compared to previous research, the results provide support that artificial neural networks and multiple linear regression are good estimation models for forecasting price effects also on an intraday basis. As most of the price effect magnitude and effect delay can be estimated correctly, it is demonstrated how a suitable mobile alerting service combining a low level of user-intrusiveness and timely information supply can be designed
    corecore