3,457 research outputs found

    Selected Papers from SDEWES 2017: The 12th Conference on Sustainable Development of Energy, Water and Environment Systems

    Get PDF
    EU energy policy is more and more promoting a resilient, efficient and sustainable energy system. Several agreements have been signed in the last few months that set ambitious goals in terms of energy efficiency and emission reductions and to reduce the energy consumption in buildings. These actions are expected to fulfill the goals negotiated at the Paris Agreement in 2015. The successful development of this ambitious energy policy needs to be supported by scientific knowledge: a huge effort must be made in order to develop more efficient energy conversion technologies based both on renewables and fossil fuels. Similarly, researchers are also expected to work on the integration of conventional and novel systems, also taking into account the needs for the management of the novel energy systems in terms of energy storage and devices management. Therefore, a multi-disciplinary approach is required in order to achieve these goals. To ensure that the scientists belonging to the different disciplines are aware of the scientific progress in the other research areas, specific Conferences are periodically organized. One of the most popular conferences in this area is the Sustainable Development of Energy, Water and Environment Systems (SDEWES) Series Conference. The 12th Sustainable Development of Energy, Water and Environment Systems Conference was recently held in Dubrovnik, Croatia. The present Special Issue of Energies, specifically dedicated to the 12th SDEWES Conference, is focused on five main fields: energy policy and energy efficiency in smart energy systems, polygeneration and district heating, advanced combustion techniques and fuels, biomass and building efficiency

    Progress and summary of reinforcement learning on energy management of MPS-EV

    Full text link
    The high emission and low energy efficiency caused by internal combustion engines (ICE) have become unacceptable under environmental regulations and the energy crisis. As a promising alternative solution, multi-power source electric vehicles (MPS-EVs) introduce different clean energy systems to improve powertrain efficiency. The energy management strategy (EMS) is a critical technology for MPS-EVs to maximize efficiency, fuel economy, and range. Reinforcement learning (RL) has become an effective methodology for the development of EMS. RL has received continuous attention and research, but there is still a lack of systematic analysis of the design elements of RL-based EMS. To this end, this paper presents an in-depth analysis of the current research on RL-based EMS (RL-EMS) and summarizes the design elements of RL-based EMS. This paper first summarizes the previous applications of RL in EMS from five aspects: algorithm, perception scheme, decision scheme, reward function, and innovative training method. The contribution of advanced algorithms to the training effect is shown, the perception and control schemes in the literature are analyzed in detail, different reward function settings are classified, and innovative training methods with their roles are elaborated. Finally, by comparing the development routes of RL and RL-EMS, this paper identifies the gap between advanced RL solutions and existing RL-EMS. Finally, this paper suggests potential development directions for implementing advanced artificial intelligence (AI) solutions in EMS

    Control systems of offshore hydrogen production by renewable energies

    Get PDF
    Esta tesis trata sobre un proyecto de diseño de un Sistema de Gestión de Energía (SGE) que utiliza Modelo de Control Predictivo (MPC) para equilibrar el consumo de energía renovable con electrolizadores productores de hidrógeno. La energía generada se equilibra regulando el punto de operación y las conexiones de los electrolizadores usando un MPC basado en un algoritmo de Programación Mixta-Entera Cuadrática. Este algoritmo MPC permite tener en cuenta previsiones de energía, mejorando así el equilibrio y reduciendo el número de encendidos de los equipos. Se han realizado diferentes casos de estudio en instalaciones compuestas por unidades de generación de energía eléctrica a partir de energía renovable. Se considera la técnica de ósmosis inversa como paso intermedio para la producción de agua que alimenta a los electrolizadores. La validación se realiza utilizando datos meteorológicos medidos en un lugar propuesto para el sistema, mostrando el funcionamiento adecuado del SGE desarrollado.Departamento de Ingeniería de Sistemas y AutomáticaDoctorado en Ingeniería Industria

    The Allure of Technology: How France and California Promoted Electric Vehicles to Reduce Urban Air Pollution

    Get PDF
    All advanced industrialized societies face the problem of air pollution produced by motor vehicles. In spite of striking improvements in internal combustion engine technology, air pollution in most urban areas is still measured at levels determined to be harmful to human health. Throughout the 1990s and beyond, California and France both chose to improve air quality by means of technological innovation, adopting legislation that promoted clean vehicles, prominently among them, electric vehicles (EVs). In California, policymakers chose a technology-forcing approach, setting ambitious goals (e.g., zero emission vehicles), establishing strict deadlines and issuing penalties for non-compliance. The policy process in California called for substantial participation from the public, the media, the academic community and the interest groups affected by the regulation. The automobile and oil industries bitterly contested the regulation, in public and in the courts. In contrast, in France the policy process was non-adversarial, with minimal public participation and negligible debate in academic circles. We argue that California's stringent regulation spurred the development of innovative hybrid and fuel cell vehicles more effectively than the French approach. However, in spite of the differences, both California and France have been unable to put a substantial number of EVs on the road. Our comparison offers some broad lessons about how policy developments within a culture influence both the development of technology and the impact of humans on the environment.Environmental policy, Electric vehicles, Air pollution, Technology policy, Sustainable transport

    Investigating Effects of Water Injection on SI Engines

    Get PDF
    In recent years, there has been a major shift towards the partial or complete electrification of vehicles that have traditionally been powered by conventional internal combustion (IC) engines; almost all major automotive manufacturers have rightly stated that they will make such a shift. This has been motivated in large part by pressure from governments and policymakers to minimize vehicular emissions, especially those of the greenhouse gas CO2, in order to control climate change. A widely recognized way of facilitating this shift is to introduce vehicles having both an electric motor and a downsized turbocharged spark-ignited engine. Downsized SI engines are designed to have lower fuel consumption and tailpipe emissions than conventional engines while maintaining a comparable power output by increasing thermal efficiency. Unfortunately, this generally necessitates higher cylinder pressures and temperatures, both of which increase the engine\u27s knock propensity. At present, engine knock is mitigated by retarding the ignition timing or fuel enrichment, both of which reduce thermal efficiency. During the last decade, research building on trials conducted with aircraft engines has shown that water injection may be a viable alternative knock mitigation strategy that mainly suppresses knock by reducing local in-cylinder mixture temperatures. Adding sufficient water to the cylinder can enable knock-free engine operation under stoichiometric conditions, reducing fuel consumption and enabling full utilization of a three-way catalytic converter (TWC).This licentiate thesis presents studies on the performance of a water injection system that were conducted within the framework of a broader project seeking to optimize SI engines for use in high efficiency hybrid powertrains. The results presented originate from two experimental campaigns. During the first campaign, a 3-cylinder 1.5L turbocharged engine was operated using 91, 95, and 98 RON gasoline fuel to assess the effects of water injection on knock mitigation, thermal efficiency, and emissions. Full- and part-load curves obtained with different fuels and water injection strategies are presented and discussed. In the second campaign, the effect of varying the moisture content of the ambient air (i.e. the relative humidity) was investigated using both experimental and theoretical methods to clarify the mechanism responsible for the knock suppression and performance enhancement caused by water injection. The engine was operated at three humidity levels that were maintained using a humidity control system developed in-house. Particulate emissions were also measured at each studied operating point and their dependence on relative humidity is discussed

    Energy Management

    Get PDF
    Forecasts point to a huge increase in energy demand over the next 25 years, with a direct and immediate impact on the exhaustion of fossil fuels, the increase in pollution levels and the global warming that will have significant consequences for all sectors of society. Irrespective of the likelihood of these predictions or what researchers in different scientific disciplines may believe or publicly say about how critical the energy situation may be on a world level, it is without doubt one of the great debates that has stirred up public interest in modern times. We should probably already be thinking about the design of a worldwide strategic plan for energy management across the planet. It would include measures to raise awareness, educate the different actors involved, develop policies, provide resources, prioritise actions and establish contingency plans. This process is complex and depends on political, social, economic and technological factors that are hard to take into account simultaneously. Then, before such a plan is formulated, studies such as those described in this book can serve to illustrate what Information and Communication Technologies have to offer in this sphere and, with luck, to create a reference to encourage investigators in the pursuit of new and better solutions
    corecore