3,449 research outputs found

    The Computational Intelligence of MoGo Revealed in Taiwan's Computer Go Tournaments

    Get PDF
    International audienceTHE AUTHORS ARE EXTREMELY GRATEFUL TO GRID5000 for helping in designing and experimenting around Monte-Carlo Tree Search. In order to promote computer Go and stimulate further development and research in the field, the event activities, "Computational Intelligence Forum" and "World 99 Computer Go Championship," were held in Taiwan. This study focuses on the invited games played in the tournament, "Taiwanese Go players versus the computer program MoGo," held at National University of Tainan (NUTN). Several Taiwanese Go players, including one 9-Dan professional Go player and eight amateur Go players, were invited by NUTN to play against MoGo from August 26 to October 4, 2008. The MoGo program combines All Moves As First (AMAF)/Rapid Action Value Estimation (RAVE) values, online "UCT-like" values, offline values extracted from databases, and expert rules. Additionally, four properties of MoGo are analyzed including: (1) the weakness in corners, (2) the scaling over time, (3) the behavior in handicap games, and (4) the main strength of MoGo in contact fights. The results reveal that MoGo can reach the level of 3 Dan with, (1) good skills for fights, (2) weaknesses in corners, in particular for "semeai" situations, and (3) weaknesses in favorable situations such as handicap games. It is hoped that the advances in artificial intelligence and computational power will enable considerable progress in the field of computer Go, with the aim of achieving the same levels as computer chess or Chinese chess in the future

    Scalable Planning and Learning for Multiagent POMDPs: Extended Version

    Get PDF
    Online, sample-based planning algorithms for POMDPs have shown great promise in scaling to problems with large state spaces, but they become intractable for large action and observation spaces. This is particularly problematic in multiagent POMDPs where the action and observation space grows exponentially with the number of agents. To combat this intractability, we propose a novel scalable approach based on sample-based planning and factored value functions that exploits structure present in many multiagent settings. This approach applies not only in the planning case, but also in the Bayesian reinforcement learning setting. Experimental results show that we are able to provide high quality solutions to large multiagent planning and learning problems

    Discovering optimal strategy in tactical combat scenarios through the evolution of behaviour trees

    Get PDF
    In this paper we address the problem of automatically discovering optimal tactics in a combat scenario in which two opposing sides control a number of fighting units. Our approach is based on the evolution of behaviour trees, combined with simulation-based evaluation of solutions to drive the evolution. Our behaviour trees use a small set of possible actions that can be assigned to a combat unit, along with standard behaviour tree constructs and a novel approach for selecting which action from the tree is performed. A set of test scenarios was designed for which an optimal strategy is known from the literature. These scenarios were used to explore and evaluate our approach. The results indicate that it is possible, from the small set of possible unit actions, for a complex strategy to emerge through evolution. Combat units with different capabilities were observed exhibiting coordinated team work and exploiting aspects of the environment

    The 2016 Two-Player GVGAI Competition

    Get PDF
    This paper showcases the setting and results of the first Two-Player General Video Game AI competition, which ran in 2016 at the IEEE World Congress on Computational Intelligence and the IEEE Conference on Computational Intelligence and Games. The challenges for the general game AI agents are expanded in this track from the single-player version, looking at direct player interaction in both competitive and cooperative environments of various types and degrees of difficulty. The focus is on the agents not only handling multiple problems, but also having to account for another intelligent entity in the game, who is expected to work towards their own goals (winning the game). This other player will possibly interact with first agent in a more engaging way than the environment or any non-playing character may do. The top competition entries are analyzed in detail and the performance of all agents is compared across the four sets of games. The results validate the competition system in assessing generality, as well as showing Monte Carlo Tree Search continuing to dominate by winning the overall Championship. However, this approach is closely followed by Rolling Horizon Evolutionary Algorithms, employed by the winner of the second leg of the contest
    • …
    corecore