49 research outputs found

    High-Performance Concrete Bridge Decks: A Fast-Track Implementation Study Volume 2: Materials

    Full text link

    Data-driven method for enhanced corrosion assessment of reinforced concrete structures

    Get PDF
    Corrosion is a major problem affecting the durability of reinforced concrete structures. Corrosion related maintenance and repair of reinforced concrete structures cost multibillion USD per annum globally. It is often triggered by the ingression of carbon dioxide and/or chloride into the pores of concrete. Estimation of these corrosion causing factors using the conventional models results in suboptimal assessment since they are incapable of capturing the complex interaction of parameters. Hygrothermal interaction also plays a role in aggravating the corrosion of reinforcement bar and this is usually counteracted by applying surface protection systems. These systems have different degree of protection and they may even cause deterioration to the structure unintentionally. The overall objective of this dissertation is to provide a framework that enhances the assessment reliability of the corrosion controlling factors. The framework is realized through the development of data-driven carbonation depth, chloride profile and hygrothermal performance prediction models. The carbonation depth prediction model integrates neural network, decision tree, boosted and bagged ensemble decision trees. The ensemble tree based chloride profile prediction models evaluate the significance of chloride ingress controlling variables from various perspectives. The hygrothermal interaction prediction models are developed using neural networks to evaluate the status of corrosion and other unexpected deteriorations in surface-treated concrete elements. Long-term data for all models were obtained from three different field experiments. The performance comparison of the developed carbonation depth prediction model with the conventional one confirmed the prediction superiority of the data-driven model. The variable importance measure revealed that plasticizers and air contents are among the top six carbonation governing parameters out of 25. The discovered topmost chloride penetration controlling parameters representing the composition of the concrete are aggregate size distribution, amount and type of plasticizers and supplementary cementitious materials. The performance analysis of the developed hygrothermal model revealed its prediction capability with low error. The integrated exploratory data analysis technique with the hygrothermal model had identified the surfaceprotection systems that are able to protect from corrosion, chemical and frost attacks. All the developed corrosion assessment models are valid, reliable, robust and easily reproducible, which assist to define proactive maintenance plan. In addition, the determined influential parameters could help companies to produce optimized concrete mix that is able to resist carbonation and chloride penetration. Hence, the outcomes of this dissertation enable reduction of lifecycle costs

    Advances in Binders for Construction Materials

    Get PDF
    The global binder production for construction materials is approximately 7.5 billion tons per year, contributing ~6% to the global anthropogenic atmospheric CO2 emissions. Reducing this carbon footprint is a key aim of the construction industry, and current research focuses on developing new innovative ways to attain more sustainable binders and concrete/mortars as a real alternative to the current global demand for Portland cement.With this aim, several potential alternative binders are currently being investigated by scientists worldwide, based on calcium aluminate cement, calcium sulfoaluminate cement, alkali-activated binders, calcined clay limestone cements, nanomaterials, or supersulfated cements. This Special Issue presents contributions that address research and practical advances in i) alternative binder manufacturing processes; ii) chemical, microstructural, and structural characterization of unhydrated binders and of hydrated systems; iii) the properties and modelling of concrete and mortars; iv) applications and durability of concrete and mortars; and v) the conservation and repair of historic concrete/mortar structures using alternative binders.We believe this Special Issue will be of high interest in the binder industry and construction community, based upon the novelty and quality of the results and the real potential application of the findings to the practice and industry

    Testing of Materials and Elements in Civil Engineering

    Get PDF
    This book was proposed and organized as a means to present recent developments in the field of testing of materials and elements in civil engineering. For this reason, the articles highlighted in this editorial relate to different aspects of testing of different materials and elements in civil engineering, from building materials to building structures. The current trend in the development of testing of materials and elements in civil engineering is mainly concerned with the detection of flaws and defects in concrete elements and structures, and acoustic methods predominate in this field. As in medicine, the trend is towards designing test equipment that allows one to obtain a picture of the inside of the tested element and materials. Interesting results with significance for building practices were obtained

    Damage modelling in fibre-reinforced composite laminates using phase field approach

    Get PDF
    Thin unidirectional-tape and woven fabric-reinforced composites are widely utilized in the aerospace and automotive industries due to their enhanced fatigue life and impact damage resistance. The increasing industrial applications of such composites warrants a need for high-fidelity computational models to assess their structural integrity and ensure robust and reliable designs. Damage detection and modelling is an important aspect of overall design and manufacturing lifecycle of composite structures. In particular, in thin-ply composites, the damage evolves as a result of coupled in-plane (membrane) and out-of-plane (bending) deformations that often arise during critical events, e.g., bird strike/ hail impact or under in-flight service loads. Contrary to metallic structures, failure in composites involves complex and mutually interacting damage patterns, e.g., fibre breakage/ pullout/ bridging, matrix cracking, debonding and delamination. Providing high-fidelity simulations of intra-laminar damage is a challenging task both from a physics and a computational perspective, due to their complex and largely quasi-brittle fracture response. This is manifested by matrix cracking and fibre breakage, which result in a sudden loss of strength with minimum crack openings; subsequent fibre pull-outs result in a further, although gradual, strength loss. To effectively model this response, it is necessary to account for the cohesive forces evolving within the fracture process zone. Furthermore, the interaction of the failure mechanisms pertinent to both the fibres and the matrix necessitate the definition of anisotropic damage models. In addition, the failure in composites extends across multiple scales; it initiates at the fibre/ matrix-level (micro-scale) and accumulates into larger cracks at the component/ structural level (macro-scale). From a simulation standpoint, accurate prediction of the structure’s critical load bearing capacity and its associated damage thresholds becomes a challenging task; accuracy necessitates a fine level of resolution, which renders the corresponding numerical model computationally expensive. To this point, most damage models are applied at the meso-scale based on local stress-strain estimates, and considering material heterogeneity. Such damage models are often computationally expensive and practically inefficient to simulate the failure behaviour in real-life composite structures. Moreover at the macro-scale, the effect of local stresses is largely minimised, which necessitates definition of a homogenised failure criterion based on global macro-scale stresses. This thesis presents a phase field based MITC4+ (Mixed Interpolation of Tensorial Components) shell element formulation to simulate fracture propagation in thin shell structures under coupled membrane and bending deformations. The employed MITC4+ approach renders the element shear- and membrane- locking free, hence providing high-fidelity fracture simulations in planar and curved topologies. To capture the mechanical response under bending-dominated fracture, a crack-driving force description based on the maximum strain energy density through the shell-thickness is considered. Several numerical examples simulating fracture in flat and curved shell structures which display significant transverse shear and membrane locking are presented. The accuracy of the proposed formulation is examined by comparing the predicted critical fracture loads against analytical estimates. To simulate diverse intra-laminar fracture modes in fibre reinforced composites, an anisotropic cohesive phase field model is proposed. The damage anisotropy is captured via distinct energetic crack driving forces, which are defined for each pertinent composite damage mode together with a structural tensor that accounts for material orientation dependent fracture properties. Distinct 3-parameter quasi-quadratic degradation functions based on fracture properties pertinent to each failure mode are used, which result in delaying or suppressing pre-mature failure initiation in all modes simultaneously. The degradation functions can be calibrated to experimentally derived strain softening curves corresponding to relevant failure modes. The proposed damage model is implemented in Abaqus and is validated against experimental results for woven fabric-reinforced and unidirectional composite laminates. Furthermore, a dynamic explicit cohesive phase field model is proposed to capture the significantly nonlinear damage evolution behaviour pertinent to impact scenarios. A strategy is presented to combine the phase field and the cohesive zone models to perform full composite-laminate simulations involving both intra-laminar and inter-laminar damage modes. Finally, the developed phase field model is employed within the framework of a multiscale surrogate modelling technique. The latter is proposed to perform fast and efficient damage simulation involving different inherent scales in composites. The technique is based on a multiscale FE2 (Finite Element squared) homogenisation approach, however the computationally expensive procedure of solving the meso- and macro-scale models simultaneously is avoided by using a robust surrogate model. The meso-scale is defined as a unit-cell representative volume element (RVE) model, which is analysed under a large number of statistically randomised mixed-mode macro-strains, applied with periodic boundary conditions. The complex damage mechanisms occurring at the meso-scale are captured using the anisotropic cohesive phase field model, and the homogenised stress-strain responses post-damage evolution are obtained. These anisotropic meso-scale fracture responses are used to train the Polynomial Chaos Expansion (PCE) and Artificial Neural Network (ANN) based surrogate models, which are interrogated at the macro-scale using arbitrary macro-strain combinations. The accuracy of the surrogate model is validated against high-fidelity phase field simulations for a set of benchmarks

    SPATIAL TRANSFORMATION PATTERN DUE TO COMMERCIAL ACTIVITY IN KAMPONG HOUSE

    Get PDF
    ABSTRACT Kampung houses are houses in kampung area of the city. Kampung House oftenly transformed into others use as urban dynamics. One of the transfomation is related to the commercial activities addition by the house owner. It make house with full private space become into mixused house with more public spaces or completely changed into full public commercial building. This study investigate the spatial transformation pattern of the kampung houses due to their commercial activities addition. Site observations, interviews and questionnaires were performed to study the spatial transformation. This study found that in kampung houses, the spatial transformation pattern was depend on type of commercial activities and owner perceptions, and there are several steps of the spatial transformation related the commercial activity addition. Keywords: spatial transformation pattern; commercial activity; owner perception, kampung house; adaptabilit

    Damage modelling in fibre-reinforced composite laminates using phase field approach

    Get PDF
    Thin unidirectional-tape and woven fabric-reinforced composites are widely utilized in the aerospace and automotive industries due to their enhanced fatigue life and impact damage resistance. The increasing industrial applications of such composites warrants a need for high-fidelity computational models to assess their structural integrity and ensure robust and reliable designs. Damage detection and modelling is an important aspect of overall design and manufacturing lifecycle of composite structures. In particular, in thin-ply composites, the damage evolves as a result of coupled in-plane (membrane) and out-of-plane (bending) deformations that often arise during critical events, e.g., bird strike/ hail impact or under in-flight service loads. Contrary to metallic structures, failure in composites involves complex and mutually interacting damage patterns, e.g., fibre breakage/ pullout/ bridging, matrix cracking, debonding and delamination. Providing high-fidelity simulations of intra-laminar damage is a challenging task both from a physics and a computational perspective, due to their complex and largely quasi-brittle fracture response. This is manifested by matrix cracking and fibre breakage, which result in a sudden loss of strength with minimum crack openings; subsequent fibre pull-outs result in a further, although gradual, strength loss. To effectively model this response, it is necessary to account for the cohesive forces evolving within the fracture process zone. Furthermore, the interaction of the failure mechanisms pertinent to both the fibres and the matrix necessitate the definition of anisotropic damage models. In addition, the failure in composites extends across multiple scales; it initiates at the fibre/ matrix-level (micro-scale) and accumulates into larger cracks at the component/ structural level (macro-scale). From a simulation standpoint, accurate prediction of the structure’s critical load bearing capacity and its associated damage thresholds becomes a challenging task; accuracy necessitates a fine level of resolution, which renders the corresponding numerical model computationally expensive. To this point, most damage models are applied at the meso-scale based on local stress-strain estimates, and considering material heterogeneity. Such damage models are often computationally expensive and practically inefficient to simulate the failure behaviour in real-life composite structures. Moreover at the macro-scale, the effect of local stresses is largely minimised, which necessitates definition of a homogenised failure criterion based on global macro-scale stresses. This thesis presents a phase field based MITC4+ (Mixed Interpolation of Tensorial Components) shell element formulation to simulate fracture propagation in thin shell structures under coupled membrane and bending deformations. The employed MITC4+ approach renders the element shear- and membrane- locking free, hence providing high-fidelity fracture simulations in planar and curved topologies. To capture the mechanical response under bending-dominated fracture, a crack-driving force description based on the maximum strain energy density through the shell-thickness is considered. Several numerical examples simulating fracture in flat and curved shell structures which display significant transverse shear and membrane locking are presented. The accuracy of the proposed formulation is examined by comparing the predicted critical fracture loads against analytical estimates. To simulate diverse intra-laminar fracture modes in fibre reinforced composites, an anisotropic cohesive phase field model is proposed. The damage anisotropy is captured via distinct energetic crack driving forces, which are defined for each pertinent composite damage mode together with a structural tensor that accounts for material orientation dependent fracture properties. Distinct 3-parameter quasi-quadratic degradation functions based on fracture properties pertinent to each failure mode are used, which result in delaying or suppressing pre-mature failure initiation in all modes simultaneously. The degradation functions can be calibrated to experimentally derived strain softening curves corresponding to relevant failure modes. The proposed damage model is implemented in Abaqus and is validated against experimental results for woven fabric-reinforced and unidirectional composite laminates. Furthermore, a dynamic explicit cohesive phase field model is proposed to capture the significantly nonlinear damage evolution behaviour pertinent to impact scenarios. A strategy is presented to combine the phase field and the cohesive zone models to perform full composite-laminate simulations involving both intra-laminar and inter-laminar damage modes. Finally, the developed phase field model is employed within the framework of a multiscale surrogate modelling technique. The latter is proposed to perform fast and efficient damage simulation involving different inherent scales in composites. The technique is based on a multiscale FE2 (Finite Element squared) homogenisation approach, however the computationally expensive procedure of solving the meso- and macro-scale models simultaneously is avoided by using a robust surrogate model. The meso-scale is defined as a unit-cell representative volume element (RVE) model, which is analysed under a large number of statistically randomised mixed-mode macro-strains, applied with periodic boundary conditions. The complex damage mechanisms occurring at the meso-scale are captured using the anisotropic cohesive phase field model, and the homogenised stress-strain responses post-damage evolution are obtained. These anisotropic meso-scale fracture responses are used to train the Polynomial Chaos Expansion (PCE) and Artificial Neural Network (ANN) based surrogate models, which are interrogated at the macro-scale using arbitrary macro-strain combinations. The accuracy of the surrogate model is validated against high-fidelity phase field simulations for a set of benchmarks
    corecore