10,546 research outputs found

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Towards edge robotics: the progress from cloud-based robotic systems to intelligent and context-aware robotic services

    Get PDF
    Current robotic systems handle a different range of applications such as video surveillance, delivery of goods, cleaning, material handling, assembly, painting, or pick and place services. These systems have been embraced not only by the general population but also by the vertical industries to help them in performing daily activities. Traditionally, the robotic systems have been deployed in standalone robots that were exclusively dedicated to performing a specific task such as cleaning the floor in indoor environments. In recent years, cloud providers started to offer their infrastructures to robotic systems for offloading some of the robot’s functions. This ultimate form of the distributed robotic system was first introduced 10 years ago as cloud robotics and nowadays a lot of robotic solutions are appearing in this form. As a result, standalone robots became software-enhanced objects with increased reconfigurability as well as decreased complexity and cost. Moreover, by offloading the heavy processing from the robot to the cloud, it is easier to share services and information from various robots or agents to achieve better cooperation and coordination. Cloud robotics is suitable for human-scale responsive and delay-tolerant robotic functionalities (e.g., monitoring, predictive maintenance). However, there is a whole set of real-time robotic applications (e.g., remote control, motion planning, autonomous navigation) that can not be executed with cloud robotics solutions, mainly because cloud facilities traditionally reside far away from the robots. While the cloud providers can ensure certain performance in their infrastructure, very little can be ensured in the network between the robots and the cloud, especially in the last hop where wireless radio access networks are involved. Over the last years advances in edge computing, fog computing, 5G NR, network slicing, Network Function Virtualization (NFV), and network orchestration are stimulating the interest of the industrial sector to satisfy the stringent and real-time requirements of their applications. Robotic systems are a key piece in the industrial digital transformation and their benefits are very well studied in the literature. However, designing and implementing a robotic system that integrates all the emerging technologies and meets the connectivity requirements (e.g., latency, reliability) is an ambitious task. This thesis studies the integration of modern Information andCommunication Technologies (ICTs) in robotic systems and proposes some robotic enhancements that tackle the real-time constraints of robotic services. To evaluate the performance of the proposed enhancements, this thesis departs from the design and prototype implementation of an edge native robotic system that embodies the concepts of edge computing, fog computing, orchestration, and virtualization. The proposed edge robotics system serves to represent two exemplary robotic applications. In particular, autonomous navigation of mobile robots and remote-control of robot manipulator where the end-to-end robotic system is distributed between the robots and the edge server. The open-source prototype implementation of the designed edge native robotic system resulted in the creation of two real-world testbeds that are used in this thesis as a baseline scenario for the evaluation of new innovative solutions in robotic systems. After detailing the design and prototype implementation of the end-to-end edge native robotic system, this thesis proposes several enhancements that can be offered to robotic systems by adapting the concept of edge computing via the Multi-Access Edge Computing (MEC) framework. First, it proposes exemplary network context-aware enhancements in which the real-time information about robot connectivity and location can be used to dynamically adapt the end-to-end system behavior to the actual status of the communication (e.g., radio channel). Three different exemplary context-aware enhancements are proposed that aim to optimize the end-to-end edge native robotic system. Later, the thesis studies the capability of the edge native robotic system to offer potential savings by means of computation offloading for robot manipulators in different deployment configurations. Further, the impact of different wireless channels (e.g., 5G, 4G andWi-Fi) to support the data exchange between a robot manipulator and its remote controller are assessed. In the following part of the thesis, the focus is set on how orchestration solutions can support mobile robot systems to make high quality decisions. The application of OKpi as an orchestration algorithm and DLT-based federation are studied to meet the KPIs that autonomously controlledmobile robots have in order to provide uninterrupted connectivity over the radio access network. The elaborated solutions present high compatibility with the designed edge robotics system where the robot driving range is extended without any interruption of the end-to-end edge robotics service. While the DLT-based federation extends the robot driving range by deploying access point extension on top of external domain infrastructure, OKpi selects the most suitable access point and computing resource in the cloud-to-thing continuum in order to fulfill the latency requirements of autonomously controlled mobile robots. To conclude the thesis the focus is set on how robotic systems can improve their performance by leveraging Artificial Intelligence (AI) and Machine Learning (ML) algorithms to generate smart decisions. To do so, the edge native robotic system is presented as a true embodiment of a Cyber-Physical System (CPS) in Industry 4.0, showing the mission of AI in such concept. It presents the key enabling technologies of the edge robotic system such as edge, fog, and 5G, where the physical processes are integrated with computing and network domains. The role of AI in each technology domain is identified by analyzing a set of AI agents at the application and infrastructure level. In the last part of the thesis, the movement prediction is selected to study the feasibility of applying a forecast-based recovery mechanism for real-time remote control of robotic manipulators (FoReCo) that uses ML to infer lost commands caused by interference in the wireless channel. The obtained results are showcasing the its potential in simulation and real-world experimentation.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Karl Holger.- Secretario: Joerg Widmer.- Vocal: Claudio Cicconett

    CERN openlab Whitepaper on Future IT Challenges in Scientific Research

    Get PDF
    This whitepaper describes the major IT challenges in scientific research at CERN and several other European and international research laboratories and projects. Each challenge is exemplified through a set of concrete use cases drawn from the requirements of large-scale scientific programs. The paper is based on contributions from many researchers and IT experts of the participating laboratories and also input from the existing CERN openlab industrial sponsors. The views expressed in this document are those of the individual contributors and do not necessarily reflect the view of their organisations and/or affiliates

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Edge Intelligence Simulator:a platform for simulating intelligent edge orchestration solutions

    Get PDF
    Abstract. To support the stringent requirements of the future intelligent and interactive applications, intelligence needs to become an essential part of the resource management in the edge environment. Developing intelligent orchestration solutions is a challenging and arduous task, where the evaluation and comparison of the proposed solution is a focal point. Simulation is commonly used to evaluate and compare proposed solutions. However, there does not currently exist openly available simulators that would have a specific focus on supporting the research on intelligent edge orchestration methods. This thesis presents a simulation platform called Edge Intelligence Simulator (EISim), the purpose of which is to facilitate the research on intelligent edge orchestration solutions. In its current form, the platform supports simulating deep reinforcement learning based solutions and different orchestration control topologies in scenarios related to task offloading and resource pricing on edge. The platform also includes additional tools for creating simulation environments, running simulations for agent training and evaluation, and plotting results. This thesis gives a comprehensive overview of the state of the art in edge and fog simulation, orchestration, offloading, and resource pricing, which provides a basis for the design of EISim. The methods and tools that form the foundation of the current EISim implementation are also presented, along with a detailed description of the EISim architecture, default implementations, use, and additional tools. Finally, EISim with its default implementations is validated and evaluated through a large-scale simulation study with 24 simulation scenarios. The results of the simulation study verify the end-to-end performance of EISim and show its capability to produce sensible results. The results also illustrate how EISim can help the researcher in controlling and monitoring the training of intelligent agents, as well as in evaluating solutions against different control topologies.Reunaälysimulaattori : alusta älykkäiden reunalaskennan orkestrointiratkaisujen simulointiin. Tiivistelmä. Älykkäiden ratkaisujen täytyy tulla olennaiseksi osaksi reunaympäristön resurssien hallinnointia, jotta tulevaisuuden vuorovaikutteisten ja älykkäiden sovellusten suoritusta voidaan tukea tasolla, joka täyttää sovellusten tiukat suoritusvaatimukset. Älykkäiden orkestrointiratkaisujen kehitys on vaativa ja työläs prosessi, jonka keskiöön kuuluu olennaisesti menetelmien testaaminen ja vertailu muita menetelmiä vasten. Simulointia käytetään tyypillisesti menetelmien arviointiin ja vertailuun, mutta tällä hetkellä ei ole avoimesti saatavilla simulaattoreita, jotka eritoten keskittyisivät tukemaan älykkäiden reunaorkestrointiratkaisujen kehitystä. Tässä opinnäytetyössä esitellään simulaatioalusta nimeltään Edge Intelligence Simulator (EISim; Reunaälysimulaattori), jonka tarkoitus on helpottaa älykkäiden reunaorkestrointiratkaisujen tutkimusta. Nykymuodossaan se tukee vahvistusoppimispohjaisten ratkaisujen sekä erityyppisten orkestroinnin kontrollitopologioiden simulointia skenaarioissa, jotka liittyvät laskennan siirtoon ja resurssien hinnoitteluun reunaympäristössä. Alustan mukana tulee myös lisätyökaluja, joita voi käyttää simulaatioympäristöjen luomiseen, simulaatioiden ajamiseen agenttien koulutusta ja arviointia varten, sekä simulaatiotulosten visualisoimiseen. Tämä opinnäytetyö sisältää kattavan katsauksen reunaympäristön simuloinnin, reunaorkestroinnin, laskennan siirron ja resurssien hinnoittelun nykytilaan kirjallisuudessa, mikä tarjoaa kunnollisen lähtökohdan EISimin toteutukselle. Opinnäytetyö esittelee menetelmät ja työkalut, joihin EISimin tämänhetkinen toteutus perustuu, sekä antaa yksityiskohtaisen kuvauksen EISimin arkkitehtuurista, oletustoteutuksista, käytöstä ja lisätyökaluista. EISimin validointia ja arviointia varten esitellään laaja simulaatiotutkimus, jossa EISimin oletustoteutuksia simuloidaan 24 simulaatioskenaariossa. Simulaatiotutkimuksen tulokset todentavat EISimin kokonaisvaltaisen toimintakyvyn, sekä osoittavat EISimin kyvyn tuottaa järkeviä tuloksia. Tulokset myös havainnollistavat, miten EISim voi auttaa tutkijoita älykkäiden agenttien koulutuksessa ja ratkaisujen arvioinnissa eri kontrollitopologioita vasten
    corecore