631 research outputs found

    Fault Detection Effectiveness of Metamorphic Relations Developed for Testing Supervised Classifiers

    Full text link
    In machine learning, supervised classifiers are used to obtain predictions for unlabeled data by inferring prediction functions using labeled data. Supervised classifiers are widely applied in domains such as computational biology, computational physics and healthcare to make critical decisions. However, it is often hard to test supervised classifiers since the expected answers are unknown. This is commonly known as the \emph{oracle problem} and metamorphic testing (MT) has been used to test such programs. In MT, metamorphic relations (MRs) are developed from intrinsic characteristics of the software under test (SUT). These MRs are used to generate test data and to verify the correctness of the test results without the presence of a test oracle. Effectiveness of MT heavily depends on the MRs used for testing. In this paper we have conducted an extensive empirical study to evaluate the fault detection effectiveness of MRs that have been used in multiple previous studies to test supervised classifiers. Our study uses a total of 709 reachable mutants generated by multiple mutation engines and uses data sets with varying characteristics to test the SUT. Our results reveal that only 14.8\% of these mutants are detected using the MRs and that the fault detection effectiveness of these MRs do not scale with the increased number of mutants when compared to what was reported in previous studies.Comment: 8 pages, AITesting 201

    Identifying Implementation Bugs in Machine Learning based Image Classifiers using Metamorphic Testing

    Full text link
    We have recently witnessed tremendous success of Machine Learning (ML) in practical applications. Computer vision, speech recognition and language translation have all seen a near human level performance. We expect, in the near future, most business applications will have some form of ML. However, testing such applications is extremely challenging and would be very expensive if we follow today's methodologies. In this work, we present an articulation of the challenges in testing ML based applications. We then present our solution approach, based on the concept of Metamorphic Testing, which aims to identify implementation bugs in ML based image classifiers. We have developed metamorphic relations for an application based on Support Vector Machine and a Deep Learning based application. Empirical validation showed that our approach was able to catch 71% of the implementation bugs in the ML applications.Comment: Published at 27th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2018

    Testing and Validating Machine Learning Classifiers by Metamorphic Testing

    Get PDF
    Machine Learning algorithms have provided important core functionality to support solutions in many scientific computing applications - such as computational biology, computational linguistics, and others. However, it is difficult to test such applications because often there is no "test oracle" to indicate what the correct output should be for arbitrary input. To help address the quality of scientific computing software, in this paper we present a technique for testing the implementations of machine learning classification algorithms on which such scientific computing software depends. Our technique is based on an approach called "metamorphic testing", which has been shown to be effective in such cases. Also presented is a case study on a real-world machine learning application framework, and a discussion of how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also conduct mutation analysis and cross-validation, which reveal that our method has very high effectiveness in killing mutants, and that observing expected cross-validation result alone is not sufficient to test for the correctness of a supervised classification program. Metamorphic testing is strongly recommended as a complementary approach. Finally we discuss how our findings can be used in other areas of computational science and engineering

    Testing scientific software: techniques for automatic detection of metamorphic relations

    Get PDF
    2015 Spring.Includes bibliographical references.Scientific software plays an important role in critical decision making in fields such as the nuclear industry, medicine, and the military. Systematic testing of such software can help to ensure that it works as expected. Comprehensive, automated software testing requires an oracle to check whether the output produced by a test case matches the expected behavior of the program. But the challenges in creating suitable oracles limit the ability to perform automated testing of scientific software. For some programs, creating an oracle may be not possible since the correct output is not known a priori. Further, it may be impractical to implement an oracle for an arbitrary input due to the complexity of a program. The software testing community refers to such programs as non-testable. Many scientific programs fall into this category of non-testable programs, since they are either written to find answers that are previously unknown or they perform complex calculations. In this work, we developed techniques to automatically predict metamorphic relations by analyzing the program structure. These metamorphic relations can serve as automated partial test oracles in scientific software. Metamorphic testing is a method for automating the testing process for programs without test oracles. This technique operates by checking whether a program behaves according to a certain set of properties called metamorphic relations. A metamorphic relation is a relationship between multiple input and output pairs of the program. It specifies how the output should change following a specific change made to the input. A change in the output that differs from what is specified by the metamorphic relation indicates a fault in the program. Metamorphic testing can be effective in testing machine learning applications, bioinformatics programs, health-care simulations, partial differential equations and other programs. Unfortunately, finding appropriate metamorphic relations for use in metamorphic testing remains a labor intensive task that is generally performed by a domain expert or a programmer. In this work we applied novel machine learning based approaches to automatically derive metamorphic relations. We first evaluated the effectiveness of modeling the metamorphic relation prediction problem as a binary classification problem. We found that support vector machines are the most effective binary classifiers for predicting metamorphic relations. We also found that using walk-based graph kernels for feature extraction from graph-based program representations further improves the prediction accuracy. In addition, incorporating mathematical properties of operations in the graph kernel computation improves the prediction accuracy. Further, we found that control flow information of a function are more effective than data dependency information for predicting metamorphic relations. Finally we investigated the possibility of creating multi-label classifiers that can predict multiple metamorphic relations using a single classifier. Our empirical studies show that multi-label classifiers are not effective as binary classifiers for predicting metamorphic relations. Automated testing will make the testing process faster, reduce the testing cost and make it more reliable. Automated testing requires automated test oracles. Automatically discovering metamorphic relations is an important step towards automating oracle creation. Work presented here is the first attempt towards developing automated techniques for deriving metamorphic relations. Our work contributes toward automating the testing process of programs that face oracle problems

    Piping classification to metamorphic testing: an empirical study towards better effectiveness for the identification of failures in mesh simplification programs

    Get PDF
    Mesh simplification is a mainstream technique to render graphics responsively in modern graphical software. However, the graphical nature of the output poses a test oracle problem in testing. Previous work uses pattern classification to identify failures. Although such an approach may be promising, it may conservatively mark the test result of a failure-causing test case as passed. This paper proposes a methodology that pipes the test cases marked as passed by the pattern classification component to a metamorphic testing component to look for missed failures. The empirical study uses three simple and general metamorphic relations as subjects, and the experimental results show a 10 percent improvement of effectiveness in the identification of failures. © 2007 IEEE.Link_to_subscribed_fulltextThis research is supported in part by a grant of the Research Grants Council of Hong Kong (project no. 714504), a grant of City University of Hong Kong (project no. 200079), and a grant of The University of Hong Kong

    Comparison of Deep Learning and the Classical Machine Learning Algorithm for the Malware Detection

    Full text link
    Recently, Deep Learning has been showing promising results in various Artificial Intelligence applications like image recognition, natural language processing, language modeling, neural machine translation, etc. Although, in general, it is computationally more expensive as compared to classical machine learning techniques, their results are found to be more effective in some cases. Therefore, in this paper, we investigated and compared one of the Deep Learning Architecture called Deep Neural Network (DNN) with the classical Random Forest (RF) machine learning algorithm for the malware classification. We studied the performance of the classical RF and DNN with 2, 4 & 7 layers architectures with the four different feature sets, and found that irrespective of the features inputs, the classical RF accuracy outperforms the DNN.Comment: 11 Pages, 1 figur
    • …
    corecore