14,493 research outputs found

    The structural, mechanical, electronic, optical and thermodynamic properties of t-X3_{3}As4_{4} (X == Si, Ge and Sn) by first-principles calculations

    Full text link
    The structural, mechanical, electronic, optical and thermodynamic properties of the t-X3_{\mathrm{3}}As4_{\mathrm{4}} (X == Si, Ge and Sn) with tetragonal structure have been investigated by first principles calculations. Our calculated results show that these compounds are mechanically and dynamically stable. By the study of elastic anisotropy, it is found that the anisotropic of the t-Sn3_{\mathrm{3}}As4_{\mathrm{4}} is stronger than that of t-Si3_{\mathrm{3}}As4_{\mathrm{4}} and t-Ge3_{\mathrm{3}}As4_{\mathrm{4}}. The band structures and density of states show that the t-X3_{\mathrm{3}}As4_{\mathrm{4}} (Si, Ge and Sn) are semiconductors with narrow band gaps. Based on the analyses of electron density difference, in t-X3_{\mathrm{3}}As4_{\mathrm{4}} As atoms get electrons, X atoms lose electrons. The calculated static dielectric constants, ε1(0)\varepsilon_{1} (0), are 15.5, 20.0 and 15.1 eV for t-X3_{\mathrm{3}}As4_{\mathrm{4}} (X == Si, Ge and Sn), respectively. The Dulong-Petit limit of t-X3_{\mathrm{3}}As4_{\mathrm{4}} is about 10 J mol1^{\mathrm{-1}}K1^{\mathrm{-1}}. The thermodynamic stability successively decreases from t-Si3_{\mathrm{3}}As4_{\mathrm{4}} to t-Ge3_{\mathrm{3}}As4_{\mathrm{4}} to t-Sn3_{\mathrm{3}}As4_{\mathrm{4}}.Comment: 14 pages, 10 figures, 6 table

    Recommendations and illustrations for the evaluation of photonic random number generators

    Full text link
    The never-ending quest to improve the security of digital information combined with recent improvements in hardware technology has caused the field of random number generation to undergo a fundamental shift from relying solely on pseudo-random algorithms to employing optical entropy sources. Despite these significant advances on the hardware side, commonly used statistical measures and evaluation practices remain ill-suited to understand or quantify the optical entropy that underlies physical random number generation. We review the state of the art in the evaluation of optical random number generation and recommend a new paradigm: quantifying entropy generation and understanding the physical limits of the optical sources of randomness. In order to do this, we advocate for the separation of the physical entropy source from deterministic post-processing in the evaluation of random number generators and for the explicit consideration of the impact of the measurement and digitization process on the rate of entropy production. We present the Cohen-Procaccia estimate of the entropy rate h(ϵ,τ)h(\epsilon,\tau) as one way to do this. In order to provide an illustration of our recommendations, we apply the Cohen-Procaccia estimate as well as the entropy estimates from the new NIST draft standards for physical random number generators to evaluate and compare three common optical entropy sources: single photon time-of-arrival detection, chaotic lasers, and amplified spontaneous emission

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic

    Integrated Flat Plate Solar Thermoelectric System

    Get PDF
    A simple flat plate solar collector, which serves as a water heater and integrated to thermoelectric modules, was put in place. The essence was to harness the same solar energy that causes the bulk of heat gains to the building to heat water while at the same time the unit acts as an air-conditioner and generator to drive air circulating fans. A space with six occupants was considered for the study. A heat gain assessment was carried out to determine the power required of the thermoelectric modules to match the space. A collector size to power the modules, was then determined, constructed and the performance assessed. With two glass covers, average maximum temperature of 1060C was recorded at mid clear sky days on latitude 7°0'49" North, 6°30'14" East in the months of April to September. Each of the thermoelectric element (TE) modules generated a voltage of 2V, enough to power a fan and a number of light emitting diodes (LED). The performance of the system was strongly dependent on the intensity of solar insolation and temperature difference of hot and cold sides for the thermoelectric module. Integrated design suggested that all of the device’s features and components were chosen to work in harmony with each other toward the goal of creating a sustainable built environment. This encouraged attention to the materials chosen so that they will age gracefully and require an appropriate amount of maintenance over their lifetim

    Polarised light stress analysis and laser scatter imaging for non-contact inspection of heat seals in food trays

    Get PDF
    This paper introduces novel non-contact methods for detecting faults in heat seals of food packages. Two alternative imaging technologies are investigated; laser scatter imaging and polarised light stress images. After segmenting the seal area from the rest of the respective image, a classifier is trained to detect faults in different regions of the seal area using features extracted from the pixels in the respective region. A very large set of candidate features, based on statistical information relating to the colour and texture of each region, is first extracted. Then an adaptive boosting algorithm (AdaBoost) is used to automatically select the best features for discriminating faults from non-faults. With this approach, different features can be selected and optimised for the different imaging methods. In experiments we compare the performance of classifiers trained using features extracted from laser scatter images only, polarised light stress images only, and a combination of both image types. The results show that the polarised light and laser scatter classifiers achieved accuracies of 96\% and 90\%, respectively, while the combination of both sensors achieved an accuracy of 95\%. These figures suggest that both systems have potential for commercial development

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl
    corecore