2,801 research outputs found

    Study of different setup costs in SingleGA to solve a one-dimensional cutting stock problem

    Get PDF
    This paper presents the application of new costs for one recent approach, called SingleGA, in solving One-Dimensional cutting stock problem. The cutting problem basically consists in finding the best way to obtain parts of distinct sizes (items) from the cutting of larger parts (objects) with the purpose of minimizing a specific cost or maximizing the profit. The obtained results of SingleGA are compared to the following methods: SHP, Kombi234, ANLCP300 and Symbio, found in literature, verifying its capacity to find feasible and competitive solutions. The computational results show that variations of SingleGA posses good results, improving as setup cost increases

    Genetic Algorithm With Random Crossover and Dynamic Mutation on Bin Packing Problem

    Get PDF
    Bin Packing Problem (BPP) is a problem that aims to minimize the number of container usage by maximizing its contents. BPP can be applied to a case, such as maximizing the printing of a number of stickers on a sheet of paper of a certain size. Genetic Algorithm is one way to overcome BPP problems. Examples of the use of a combination of BPP and Genetic Algorithms are applied to printed paper in Digital Printing companies. Genetic Algorithms adopt evolutionary characteristics, such as selection, crossover and mutation. Repeatedly, Genetic Algorithms produce individuals who represent solutions. However, this algorithm often does not achieve maximum results because it is trapped in a local search and a case of premature convergence. The best results obtained are not comprehensive, so it is necessary to modify the parameters to improve this condition. Random Crossover and Dynamic Mutation were chosen to improve the performance of Genetic Algorithms. With this application, the performance of the Genetic Algorithm in the case of BPP can overcome premature convergence and maximize the allocation of printing and the use of paper. The test results show that an average of 99 stickers can be loaded on A3 + size paper and the best generation is obtained on average in the 21st generation and the remaining space is 3,500mm2

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    A simulation-based algorithm for solving the resource-assignment problem in satellite telecommunication networks

    Get PDF
    This paper proposes an heuristic for the scheduling of capacity requests and the periodic assignment of radio resources in geostationary (GEO) satellite networks with star topology, using the Demand Assigned Multiple Access (DAMA) protocol in the link layer, and Multi-Frequency Time Division Multiple Access (MF-TDMA) and Adaptive Coding and Modulation (ACM) in the physical layer.En este trabajo se propone una heurística para la programación de las solicitudes de capacidad y la asignación periódica de los recursos de radio en las redes de satélites geoestacionarios (GEO) con topología en estrella, con la demanda de acceso múltiple de asignación (DAMA) de protocolo en la capa de enlace, y el Multi-Frequency Time Division (Acceso múltiple por MF-TDMA) y codificación y modulación Adaptable (ACM) en la capa física.En aquest treball es proposa una heurística per a la programació de les sol·licituds de capacitat i l'assignació periòdica dels recursos de ràdio en les xarxes de satèl·lits geoestacionaris (GEO) amb topologia en estrella, amb la demanda d'accés múltiple d'assignació (DAMA) de protocol en la capa d'enllaç, i el Multi-Frequency Time Division (Accés múltiple per MF-TDMA) i codificació i modulació Adaptable (ACM) a la capa física

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Problems, Models and Algorithms in One- and Two-Dimensional Cutting

    Get PDF
    Within such disciplines as Management Science, Information and Computer Science, Engineering, Mathematics and Operations Research, problems of cutting and packing (C&P) of concrete and abstract objects appear under various specifications (cutting problems, knapsack problems, container and vehicle loading problems, pallet loading, bin packing, assembly line balancing, capital budgeting, changing coins, etc.), although they all have essentially the same logical structure. In cutting problems, a large object must be divided into smaller pieces; in packing problems, small items must be combined to large objects. Most of these problems are NP-hard. Since the pioneer work of L.V. Kantorovich in 1939, which first appeared in the West in 1960, there has been a steadily growing number of contributions in this research area. In 1961, P. Gilmore and R. Gomory presented a linear programming relaxation of the one-dimensional cutting stock problem. The best-performing algorithms today are based on their relaxation. It was, however, more than three decades before the first `optimum? algorithms appeared in the literature and they even proved to perform better than heuristics. They were of two main kinds: enumerative algorithms working by separation of the feasible set and cutting plane algorithms which cut off infeasible solutions. For many other combinatorial problems, these two approaches have been successfully combined. In this thesis we do it for one-dimensional stock cutting and two-dimensional two-stage constrained cutting. For the two-dimensional problem, the combined scheme provides mostly better solutions than other methods, especially on large-scale instances, in little time. For the one-dimensional problem, the integration of cuts into the enumerative scheme improves the results of the latter only in exceptional cases. While the main optimization goal is to minimize material input or trim loss (waste), in a real-life cutting process there are some further criteria, e.g., the number of different cutting patterns (setups) and open stacks. Some new methods and models are proposed. Then, an approach combining both objectives will be presented, to our knowledge, for the first time. We believe this approach will be highly relevant for industry

    Computer aided process planning for multi-axis CNC machining using feature free polygonal CAD models

    Get PDF
    This dissertation provides new methods for the general area of Computer Aided Process Planning, often referred to as CAPP. It specifically focuses on 3 challenging problems in the area of multi-axis CNC machining process using feature free polygonal CAD models. The first research problem involves a new method for the rapid machining of Multi-Surface Parts. These types of parts typically have different requirements for each surface, for example, surface finish, accuracy, or functionality. The CAPP algorithms developed for this problem ensure the complete rapid machining of multi surface parts by providing better setup orientations to machine each surface. The second research problem is related to a new method for discrete multi-axis CNC machining of part models using feature free polygonal CAD models. This problem specifically considers a generic 3-axis CNC machining process for which CAPP algorithms are developed. These algorithms allow the rapid machining of a wide variety of parts with higher geometric accuracy by enabling access to visible surfaces through the choice of appropriate machine tool configurations (i.e. number of axes). The third research problem addresses challenges with geometric singularities that can occur when 2D slice models are used in process planning. The conversion from CAD to slice model results in the loss of model surface information, the consequence of which could be suboptimal or incorrect process planning. The algorithms developed here facilitate transfer of complete surface geometry information from CAD to slice models. The work of this dissertation will aid in developing the next generation of CAPP tools and result in lower cost and more accurately machined components

    Computer Numerical Controlled (CNC) machining for Rapid Manufacturing Processes

    Get PDF
    The trends of rapid manufacturing (RM) have influenced numerous developments of technologies mainly in additive processes. However, the material compatibility and accuracy problems of additive techniques have limited the ability to manufacture end-user products. More established manufacturing methods such as Computer Numerical Controlled (CNC) machining can be adapted for RM under some circumstances. The use of a 3-axis CNC milling machine with an indexing device increases tool accessibility and overcomes most of the process constraints. However, more work is required to enhance the application of CNC for RM, and this thesis focuses on the improvement of roughing and finishing operations and the integration of cutting tools in CNC machining to make it viable for RM applications. The purpose of this research is to further adapt CNC machining to rapid manufacturing, and it is believed that implementing the suggested approaches will speed up production, enhance part quality and make the process more suitable for RM. A feasible approach to improving roughing operations is investigated through the adoption of different cutting orientations. Simulation analyses are performed to manipulate the values of the orientations and to generate estimated cutting times. An orientations set with minimum machining time is selected to execute roughing processes. Further development is carried out to integrate different tool geometries; flat and ball nose end mill in the finishing processes. A surface classification method is formulated to assist the integration and to define the cutting regions. To realise a rapid machining system, the advancement of Computer Aided Manufacturing (CAM) is exploited. This allows CNC process planning to be handled through customised programming codes. The findings from simulation studies are supported by the machining experiment results. First, roughing through four independent orientations minimized the cutting time and prevents any susceptibility to tool failure. Secondly, the integration of end mill tools improves surface quality of the machined parts. Lastly, the process planning programs manage to control the simulation analyses and construct machining operations effectively

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044
    corecore