230 research outputs found

    Algorithms in computer-aided design of VLSI circuits.

    Get PDF
    With the increased complexity of Very Large Scale Integrated (VLSI) circuits,Computer Aided Design (CAD) plays an even more important role. Top-downdesign methodology and layout of VLSI are reviewed. Moreover, previouslypublished algorithms in CAD of VLSI design are outlined.In certain applications, Reed-Muller (RM) forms when implemented withAND/XOR or OR/XNOR logic have shown some attractive advantages overthe standard Boolean logic based on AND/OR logic. The RM forms implementedwith OR/XNOR logic, known as Dual Forms of Reed-Muller (DFRM),is the Dual form of traditional RM implemented with AND /XOR.Map folding and transformation techniques are presented for the conversionbetween standard Boolean and DFRM expansions of any polarity. Bidirectionalmulti-segment computer based conversion algorithms are also proposedfor large functions based on the concept of Boolean polarity for canonicalproduct-of-sums Boolean functions. Furthermore, another two tabular basedconversion algorithms, serial and parallel tabular techniques, are presented forthe conversion of large functions between standard Boolean and DFRM expansionsof any polarity. The algorithms were tested for examples of up to 25variables using the MCNC and IWLS'93 benchmarks.Any n-variable Boolean function can be expressed by a Fixed PolarityReed-Muller (FPRM) form. In order to have a compact Multi-level MPRM(MMPRM) expansion, a method called on-set table method is developed.The method derives MMPRM expansions directly from FPRM expansions.If searching all polarities of FPRM expansions, the MMPRM expansions withthe least number of literals can be obtained. As a result, it is possible to findthe best polarity expansion among 2n FPRM expansions instead of searching2n2n-1 MPRM expansions within reasonable time for large functions. Furthermore,it uses on-set coefficients only and hence reduces the usage of memorydramatically.Currently, XOR and XNOR gates can be implemented into Look-Up Tables(LUT) of Field Programmable Gate Arrays (FPGAs). However, FPGAplacement is categorised to be NP-complete. Efficient placement algorithmsare very important to CAD design tools. Two algorithms based on GeneticAlgorithm (GA) and GA with Simulated Annealing (SA) are presented for theplacement of symmetrical FPGA. Both of algorithms could achieve comparableresults to those obtained by Versatile Placement and Routing (VPR) toolsin terms of the number of routing channel tracks

    Logic synthesis and optimisation using Reed-Muller expansions

    Get PDF
    This thesis presents techniques and algorithms which may be employed to represent, generate and optimise particular categories of Exclusive-OR SumOf-Products (ESOP) forms. The work documented herein concentrates on two types of Reed-Muller (RM) expressions, namely, Fixed Polarity Reed-Muller (FPRM) expansions and KROnecker (KRO) expansions (a category of mixed polarity RM expansions). Initially, the theory of switching functions is comprehensively reviewed. This includes descriptions of various types of RM expansion and ESOP forms. The structure of Binary Decision Diagrams (BDDs) and Reed-Muller Universal Logic Module (RM-ULM) networks are also examined. Heuristic algorithms for deriving optimal (sub-optimal) FPRM expansions of Boolean functions are described. These algorithms are improved forms of an existing tabular technique [1]. Results are presented which illustrate the performance of these new minimisation methods when evaluated against selected existing techniques. An algorithm which may be employed to generate FPRM expansions from incompletely specified Boolean functions is also described. This technique introduces a means of determining the optimum allocation of the Boolean 'don't care' terms so as to derive equivalent minimal FPRM expansions. The tabular technique [1] is extended to allow the representation of KRO expansions. This new method may be employed to generate KRO expansions from either an initial incompletely specified Boolean function or a KRO expansion of different polarity. Additionally, it may be necessary to derive KRO expressions from Boolean Sum-Of-Products (SOP) forms where the product terms are not minterms. A technique is described which forms KRO expansions from disjoint SOP forms without first expanding the SOP expressions to minterm forms. Reed-Muller Binary Decision Diagrams (RMBDDs) are introduced as a graphical means of representing FPRM expansions. RMBDDs are analogous to the BDDs used to represent Boolean functions. Rules are detailed which allow the efficient representation of the initial FPRM expansions and an algorithm is presented which may be employed to determine an optimum (sub-optimum) variable ordering for the RMBDDs. The implementation of RMBDDs as RM-ULM networks is also examined. This thesis is concluded with a review of the algorithms and techniques developed during this research project. The value of these methods are discussed and suggestions are made as to how improved results could have been obtained. Additionally, areas for future work are proposed

    Combinational logic synthesis based on the dual form of Reed-Muller representation

    Get PDF
    In certain applications, AND/XOR (Reed-Muller), and ORlXNOR (Dual form of Reed-Muller) logic have shown some attractive advantages over the standard Sum of Products (SOP) and Product of Sums (POS). Bidirectional conversion algorithms between SOP and AND/XOR also between POS and ORlXNOR based on Sparse and partitioning techniques are presented for multiple output Boolean functions. The developed programs are tested for some benchmarks with up to 20 inputs and 40 outputs. A new direct method is presented to calculate the coefficients of the Fixed Polarity Dual Reed-Muller (FPDRM) from the truth vector of the POS. Any Boolean function can be expressed by FPDRM forms. There are 211 polarities for an n-variable function and the number of sum terms depends on these polarities. Finding the best polarity is costly interims of CPU time, in order to search for the best polarity which will lead to the minimum number of sums for a particular function. Therefore, an algorithm is developed to compute all the coefficients of the Fixed Polarity Dual Reed-Muller (FPDRM) with polarity p from any polarity q. This technique is used to find the best polarity of FPDRM among the 211 fixed polarities. The algorithm is based on the Dual- polarity property and the Gray code strategy. Therefore, there is no need to start from POS form to find FPDRM coefficients for all the polarities. The proposed methods are efficient in terms of memory size and CPU time. A fast algorithm is developed and implemented in C language which can convert between POSs and FPDRMs. The program was tested for up to 23 variables. A modified version of the same program was used to find the best polarity. For up to 13 variables the CPU time was less than 42 seconds. To search for the optimal polarity for large number of variables and to reduce the se arch time 0 ffinding the 0 ptimal polarity 0 fthe function, two new algorithms are developed and presented in this thesis. The first one is used to convert between P OS and Positive Polarity Dual Reed-Muller (PPDRM) forms. The second algorithm will find the optimal fixed polarity for the FPDRM among the 211 different polarities for large n-variable functions. The most popular minimization criterion of the FPDRM form is obtained by the exhaustive search of the entire polarity vector. A non-exhaustive method for FPDRM expansions is presented. The new algorithms are based on separation of the truth vector (T) of POSs around each variable Xi into two groups. Instead of generating all of the polarity sets and searching for the best polarity, this algorithm will find the optimal polarity using the separation and sparse techniques, which will lead to optimal polarity. Time efficiency and computing speed are thus achieved in this technique. The algorithms don't require a large size of memory and don't require a long CPU time. The two algorithms are implemented in C language and tested for some benchmark. The proposed methods are fast and efficient as shown in the experimental results and can be used for large number of variables.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Combinational logic synthesis based on the dual form of Reed-Muller representation.

    Get PDF
    In certain applications, AND/XOR (Reed-Muller), and ORlXNOR (Dualform of Reed-Muller) logic have shown some attractive advantages over thestandard Sum of Products (SOP) and Product of Sums (POS). Bidirectionalconversion algorithms between SOP and AND/XOR also between POS andORlXNOR based on Sparse and partitioning techniques are presented for multipleoutput Boolean functions. The developed programs are tested for somebenchmarks with up to 20 inputs and 40 outputs.A new direct method is presented to calculate the coefficients of the FixedPolarity Dual Reed-Muller (FPDRM) from the truth vector of the POS. AnyBoolean function can be expressed by FPDRM forms. There are 211 polarities foran n-variable function and the number of sum terms depends on these polarities.Finding the best polarity is costly interims of CPU time, in order to search for thebest polarity which will lead to the minimum number of sums for a particularfunction. Therefore, an algorithm is developed to compute all the coefficients ofthe Fixed Polarity Dual Reed-Muller (FPDRM) with polarity p from any polarity q.This technique is used to find the best polarity of FPDRM among the 211 fixedpolarities. The algorithm is based on the Dual- polarity property and the Gray codestrategy. Therefore, there is no need to start from POS form to find FPDRMcoefficients for all the polarities. The proposed methods are efficient in terms ofmemory size and CPU time. A fast algorithm is developed and implemented in Clanguage which can convert between POSs and FPDRMs. The program was testedfor up to 23 variables. A modified version of the same program was used to findthe best polarity. For up to 13 variables the CPU time was less than 42 seconds.To search for the optimal polarity for large number of variables and toreduce the se arch time 0 ffinding the 0 ptimal polarity 0 fthe function, two newalgorithms are developed and presented in this thesis. The first one is used toconvert between P OS and Positive Polarity Dual Reed-Muller (PPDRM) forms.The second algorithm will find the optimal fixed polarity for the FPDRM amongthe 211 different polarities for large n-variable functions. The most popularminimization criterion of the FPDRM form is obtained by the exhaustive search ofthe entire polarity vector. A non-exhaustive method for FPDRM expansions ispresented. The new algorithms are based on separation of the truth vector (T) ofPOSs around each variable Xi into two groups. Instead of generating all of thepolarity sets and searching for the best polarity, this algorithm will find the optimalpolarity using the separation and sparse techniques, which will lead to optimalpolarity. Time efficiency and computing speed are thus achieved in this technique.The algorithms don't require a large size of memory and don't require a long CPUtime. The two algorithms are implemented in C language and tested for somebenchmark. The proposed methods are fast and efficient as shown in theexperimental results and can be used for large number of variables

    Automated synthesis and optimization of multilevel logic circuits.

    Get PDF
    With the increased complexity of Very Large Scaled Integrated (VLSI) circuits, multilevellogic synthesis plays an even more important role due to its flexibility and compactness.The history of symbolic logic and some typical techniques for multilevel logic synthesisare reviewed. These methods include algorithmic approach; Rule-Based approach; BinaryDecision Diagram (BDD) approach; Field Programmable Gate Array(FPGA) approachand several perturbation applications.One new kind of don't cares (DCs), called functional DCs has been proposed for multilevellogic synthesis. The conventional two-level cubes are generalized to multilevel cubes.Then functional DCs are generated based on the properties of containment. The conceptof containment is more general than unateness which leads to the generation of newDCs. A separate C program has been developed to utilize the functional DCs generatedas a Boolean function is decomposed for both single output and multiple output functions.The program can produce better results than script.rugged of SIS, developed by UC Berkeley,both in area and speed in less CPU time for a number of testcases from MCNC andIWLS'93 benchmarks.In certain applications ANDjXOR (Reed-Muller) logic has shown some attractive advantagesover the standard Boolean logic based on AND JOR operations. A bidirectionalconversion algorithm between these two paradigms is presented based on the concept of polarityfor sum-of-products (SOP) Boolean functions, multiple segment and multiple pointerfacilities. Experimental results show that the algorithm is much faster than the previouslypublished programs for any fixed polarity. Based on this algorithm, a new technique calledredundancy-removal is applied to generalize the idea to very large multiple output Booleanfunctions. Results for benchmarks with up to 199 inputs and 99 outputs are presented.Applying the preceding conversion program, any Boolean functions can be expressedby fixed polarity Reed-Muller forms. There are 2n polarities for an n-variable function andthe number of product terms depends on these polarities. The problem of exact polarityminimization is computationally extensive and current programs are only suitable whenn :::; 15. Based on the comparison of the concepts of polarity in the standard Boolean logicand Reed-Muller logic, a fast algorithm is developed and implemented in C language whichcan find the best polarity for multiple output functions. Benchmark examples of up to 25inputs and 29 outputs run on a personal computer are given.After the best polarity for a Boolean function is calculated, this function can be furthersimplified using mixed polarity methods by combining the adjacent product terms. Hence,an efficient program is developed based on decomposition strategy to implement mixedpolarity minimization for both single output and very large multiple output Boolean functions.Experimental results show that the numbers of product terms are much less thanthe results produced by ESPRESSO for some categories of functions

    Fault tolerance issues in nanoelectronics

    Get PDF
    The astonishing success story of microelectronics cannot go on indefinitely. In fact, once devices reach the few-atom scale (nanoelectronics), transient quantum effects are expected to impair their behaviour. Fault tolerant techniques will then be required. The aim of this thesis is to investigate the problem of transient errors in nanoelectronic devices. Transient error rates for a selection of nanoelectronic gates, based upon quantum cellular automata and single electron devices, in which the electrostatic interaction between electrons is used to create Boolean circuits, are estimated. On the bases of such results, various fault tolerant solutions are proposed, for both logic and memory nanochips. As for logic chips, traditional techniques are found to be unsuitable. A new technique, in which the voting approach of triple modular redundancy (TMR) is extended by cascading TMR units composed of nanogate clusters, is proposed and generalised to other voting approaches. For memory chips, an error correcting code approach is found to be suitable. Various codes are considered and a lookup table approach is proposed for encoding and decoding. We are then able to give estimations for the redundancy level to be provided on nanochips, so as to make their mean time between failures acceptable. It is found that, for logic chips, space redundancies up to a few tens are required, if mean times between failures have to be of the order of a few years. Space redundancy can also be traded for time redundancy. As for memory chips, mean times between failures of the order of a few years are found to imply both space and time redundancies of the order of ten
    • …
    corecore