21 research outputs found

    Polymer Geogrids: A Review of Material, Design and Structure Relationships

    Get PDF
    Geogrids are a class of geosynthetic materials made of polymer materials with widespread transportation, infrastructure, and structural applications. Geogrids are now routinely used in soil stabilization applications ranging from reinforcing walls to soil reinforcement below grade or embankments with increased potential for remote-sensing applications. Developments in manufacturing procedures have allowed new geogrid designs to be fabricated in various forms of uniaxial, biaxial, and triaxial configurations. The design flexibility allows deployments based on the load-carrying capacity desired, where biaxial geogrids may be incorporated when loads are applied in both the principal directions. On the other hand, uniaxial geogrids provide higher strength in one direction and are used for mechanically stabilized earth walls. More recently, triaxial geogrids that offer a more quasi-isotropic load capacity in multiple directions have been proposed for base course reinforcement. The variety of structures, polymers, and the geometry of the geogrid materials provide engineers and designers many options for new applications. Still, they also create complexity in terms of selection, characterization, and long-term durability. In this review, advances and current understanding of geogrid materials and their applications to date are presented. A critical analysis of the various geogrid systems, their physical and chemical characteristics are presented with an eye on how these properties impact the short- and long-term properties. The review investigates the approaches to mechanical behavior characterization and how computational methods have been more recently applied to advance our understanding of how these materials perform in the field. Finally, recent applications are presented for remote sensing sub-grade conditions and incorporation of geogrids in composite materials

    Testing of Materials and Elements in Civil Engineering

    Get PDF
    This book was proposed and organized as a means to present recent developments in the field of testing of materials and elements in civil engineering. For this reason, the articles highlighted in this editorial relate to different aspects of testing of different materials and elements in civil engineering, from building materials to building structures. The current trend in the development of testing of materials and elements in civil engineering is mainly concerned with the detection of flaws and defects in concrete elements and structures, and acoustic methods predominate in this field. As in medicine, the trend is towards designing test equipment that allows one to obtain a picture of the inside of the tested element and materials. Interesting results with significance for building practices were obtained

    Monitoring of a landfill side slope lining system: instrument selection, installation and performance

    Get PDF
    Municipal solid waste landfill barrier systems often comprise a combination of geosynthetics and mineral layers. Throughout the last twenty years there has been extensive research on the interactions between the materials and on performance of the geosynthetics including aspects of durability. This research has resulted in significant advances in the design and specification of landfill lining systems. However, to date there has been limited research carried out on in situ landfill lining system behaviour. Measured behaviour from field scale trials and of in service operation can provide valuable information on landfill lining system performance and allow a better understanding of composite material behaviour. Although many numerical modelling programs are applied to evaluate lining system stability and integrity, data to validate these models is currently limited. This paper highlights the data required to validate numerical models and instrumentation techniques that may be used to acquire this information. The paper focuses on geotechnical instrumentation deployed on the side slope lining system at the Milegate Extension Landfill, UK. The instrumented lining system comprises 1.0 m of compacted clay, a 2 mm double textured high density polyethylene geomembrane, a nonwoven geotextile and a sand cover soil layer. Instrument selection and problems associated with acquiring consistent, reliable and valuable data in a field environment are discussed, as are the challenges and problems that occur when preparing a full scale experiment. Sources of uncertainties within readings are highlighted. Additionally, initial results collected during sand veneer layer placement on the slope are presented. These demonstrate acceptable instrument performance over a 2 year period. Measured behaviour highlights the significance of geomembrane strains driven by temperature changes, generation of post peak strengths at interfaces during fill placement on the side slope due to relative displacement at interfaces between components, and mechanisms of stress redistribution in the geomembrane that result in time dependent changes in strain under constant load and temperature conditions

    Recent Advances and Future Trends in Pavement Engineering

    Get PDF
    This Special Issue “Recent Advances and Future Trends in Pavement Engineering” was proposed and organized to present recent developments in the field of innovative pavement materials and engineering. The 12 articles and state-of-the-art reviews highlighted in this editorial are related to different aspects of pavement engineering, from recycled asphalt pavements to alkali-activated materials, from hot mix asphalt concrete to porous asphalt concrete, from interface bonding to modal analysis, and from destructive testing to non-destructive pavement monitoring by using fiber optics sensors. This Special Issue partly provides an overview of current innovative pavement engineering ideas that have the potential to be implemented in industry in the future, covering some recent developments

    Fiber Optic Sensors Embedded in Textile-Reinforced Concrete for Smart Structural Health Monitoring: A Review

    Get PDF
    The last decade has seen rapid developments in the areas of carbon fiber technology, additive manufacturing technology, sensor engineering, i.e., wearables, and new structural reinforcement techniques. These developments, although from different areas, have collectively paved way for concrete structures with non-corrosive reinforcement and in-built sensors. Therefore, the purpose of this effort is to bridge the gap between civil engineering and sensor engineering communities through an overview on the up-to-date technological advances in both sectors, with a special focus on textile reinforced concrete embedded with fiber optic sensors. The introduction section highlights the importance of reducing the carbon footprint resulting from the building industry and how this could be effectively achieved by the use of state-of-the-art reinforcement techniques. Added to these benefits would be the implementations on infrastructure monitoring for the safe operation of structures through their entire lifespan by utilizing sensors, specifically, fiber optic sensors. The paper presents an extensive description on fiber optic sensor engineering that enables the incorporation of sensors into the reinforcement mechanism of a structure at its manufacturing stage, enabling effective monitoring and a wider range of capabilities when compared to conventional means of structural health monitoring. In future, these developments, when combined with artificial intelligence concepts, will lead to distributed sensor networks for smart monitoring applications, particularly enabling such distributed networks to be implemented/embedded at their manufacturing stage

    New innovations in pavement materials and engineering: A review on pavement engineering research 2021

    Get PDF
    Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges. In the past 10 years, the pavement infrastructure strongly supports the rapid development of the global social economy. New theories, new methods, new technologies and new materials related to pavement engineering are emerging. Deterioration of pavement infrastructure is a typical multi-physics problem. Because of actual coupled behaviors of traffic and environmental conditions, predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis. In order to summarize the current and determine the future research of pavement engineering, Journal of Traffic and Transportation Engineering (English Edition) has launched a review paper on the topic of “New innovations in pavement materials and engineering: A review on pavement engineering research 2021”. Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering, this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world. The content includes asphalt binder performance and modeling, mixture performance and modeling of pavement materials, multi-scale mechanics, green and sustainable pavement, and intelligent pavement. Overall, this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering
    corecore