17 research outputs found

    Smooth and Peaked Solitons of the CH equation

    Full text link
    The relations between smooth and peaked soliton solutions are reviewed for the Camassa-Holm (CH) shallow water wave equation in one spatial dimension. The canonical Hamiltonian formulation of the CH equation in action-angle variables is expressed for solitons by using the scattering data for its associated isospectral eigenvalue problem, rephrased as a Riemann-Hilbert problem. The momentum map from the action-angle scattering variables Tβˆ—(TN)T^*({\mathbb{T}^N}) to the flow momentum (Xβˆ—\mathfrak{X}^*) provides the Eulerian representation of the NN-soliton solution of CH in terms of the scattering data and squared eigenfunctions of its isospectral eigenvalue problem. The dispersionless limit of the CH equation and its resulting peakon solutions are examined by using an asymptotic expansion in the dispersion parameter. The peakon solutions of the dispersionless CH equation in one dimension are shown to generalize in higher dimensions to peakon wave-front solutions of the EPDiff equation whose associated momentum is supported on smoothly embedded subspaces. The Eulerian representations of the singular solutions of both CH and EPDiff are given by the (cotangent-lift) momentum maps arising from the left action of the diffeomorphisms on smoothly embedded subspaces.Comment: First version -- comments welcome! Submitted to JPhys

    Similarity reductions of peakon equations: integrable cubic equations

    Full text link
    We consider the scaling similarity solutions of two integrable cubically nonlinear partial differential equations (PDEs) that admit peaked soliton (peakon) solutions, namely the modified Camassa-Holm (mCH) equation and Novikov's equation. By making use of suitable reciprocal transformations, which map the mCH equation and Novikov's equation to a negative mKdV flow and a negative Sawada-Kotera flow, respectively, we show that each of these scaling similarity reductions is related via a hodograph transformation to an equation of Painlev\'e type: for the mCH equation, its reduction is of second order and second degree, while for Novikov's equation the reduction is a particular case of Painlev\'e V. Furthermore, we show that each of these two different Painlev\'e-type equations is related to the particular cases of Painlev\'e III that arise from analogous similarity reductions of the Camassa-Holm and the Degasperis-Procesi equation, respectively. For each of the cubically nonlinear PDEs considered, we also give explicit parametric forms of their periodic travelling wave solutions in terms of elliptic functions. We present some parametric plots of the latter, and, by using explicit algebraic solutions of Painlev\'e III, we do the same for some of the simplest examples of scaling similarity solutions, together with descriptions of their leading order asymptotic behaviour
    corecore