395 research outputs found

    Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation

    Get PDF
    The epileptogenic focus is a brain area that may be surgically removed to control of epileptic seizures. Locating it is an essential and crucial step prior to the surgical treatment. However, given the difficulty of determining the localization of this brain region responsible of the initial seizure discharge, many works have proposed machine learning methods for the automatic classification of focal and non-focal electroencephalographic (EEG) signals. These works use automatic classification as an analysis tool for helping neurosurgeons to identify focal areas off-line, out of surgery, during the processing of the huge amount of information collected during several days of patient monitoring. In turn, this paper proposes an automatic classification procedure capable of assisting neurosurgeons online, during the resective epilepsy surgery, to refine the localization of the epileptogenic area to be resected, if they have doubts. This goal requires a real-time implementation with as low a computational cost as possible. For that reason, this work proposes both a feature set and a classifier model that minimizes the computational load while preserving the classification accuracy at 95.5%, a level similar to previous works. In addition, the classification procedure has been implemented on a FPGA device to determine its resource needs and throughput. Thus, it can be concluded that such a device can embed the whole classification process, from accepting raw signals to the delivery of the classification results in a cost-effective Xilinx Spartan-6 FPGA device. This real-time implementation begins providing results after a 5 s latency, and later, can deliver floating-point classification results at 3.5 Hz rate, using overlapped time-windows

    Detection and Classification of EEG Epileptiform Transients with RBF Networks using Hilbert Huang Transform-derived Features

    Get PDF
    Diagnosis of epilepsy or epileptic transients AEP (Abnormal Epileptiform Paroxysmal) is tedious, but important, and an expensive process. The process involves trained neurologists going over the patient\u27s EEG records looking for epileptiform discharge like events and classifying it as AEP (Abnormal Epileptiform Paroxysmal) or non-AEP. The objective of this research is to automate the process of detecting such events and classifying them into AEP(definitely an Epileptiform Transient) and non-AEPs (unlikely an epileptiform transient). The problem is approached in two separate steps and cascaded to validate and analyze the performance of the overall system. The first step is a detection problem to find the Epileptiform like transients (ETs) from the Electroencephalograph (EEG) of a patient. A Radial basis function-based neural network has been trained using a training set consisting of examples from both classes (ETs and non-ETs). The ETs are the yellow boxes which are marked by expert neurologists. There are no particular examples of non-ETs and any data not annotated by experts can be considered to be examples of non-ETs. The second step is classification of the detected ETs also known as yellow boxes, into AEPs or non-AEPs. A similar Radial basis function-based neural network has been trained using the ETs marked and classified into AEPs and non-AEPs manually by seven expert neurologists. The annotations or yellow boxes along with the contextual signal was used to extract features using the Hilbert Huang Transform. The system is validated by considering an entire epoch of the patient EEG and potential ETs are identified using the detector. The potential ETs marked by the detector are classified into AEPs and non-AEPs and compared against the annotations marked by the experts

    Empirical Mode Decomposition of EEG Signals for the Effectual Classification of Seizures

    Get PDF
    Empirical mode decomposition (EMD) is a remarkable method for the analysis of nonlinear and non-stationary data. EMD will breakdown the given signal into intrinsic mode functions (IMFs), which can represent natural signals effectively. In this work, the competence of EMD with traditional features to classify the seizure and non-seizure EEG signals is studied. Due to the complex nature of human brain, the EEG signals which are recorded from different regions of brain are non-stationary in nature. Different features such as entropy features (approximate entropy (ApEn), sample entropy (SmEn), Shannon entropy (ShEn), RĂ©nyi entropy (RnEn)), fractal dimension features (Petrosian fractal dimension, Higuchi fractal dimension, Katz fractal dimension), statistical features (mean, standard deviation and energy) and exponential energy features are extracted from IMFs and fed to a SVM classifier. The performances of extracted features are studied independently. The result shows that, the EMD method is well suited for complex seizure EEG signal classification

    Acoustic emission waveform picking with time delay neural networks during rock deformation laboratory experiments

    Get PDF
    We report a new method using a time delay neural network to transform acoustic emission (AE) waveforms into a time series of instantaneous frequency content and permutation entropy. This permits periods of noise to be distinguished from signals. The model is trained in sequential batches, using an automated process that steadily improves signal recognition as new data are added. The model was validated using AE data from rock deformation experiments, using Darley Dale sandstone in fully drained conditions at a confining pressure of 20 MPa (approximately 800 m simulated depth). The model is initially trained by manual picking of five high-amplitude waveforms randomly selected from the dataset (experiment). This is followed by semisupervised training on a subset of 300 waveforms

    Coarse-graining Approaches in Univariate Multiscale Sample and Dispersion Entropy

    Get PDF
    The evaluation of complexity in univariate signals has attracted considerable attention in recent years. This is often done using the framework of Multiscale Entropy, which entails two basic steps: coarse-graining to consider multiple temporal scales, and evaluation of irregularity for each of those scales with entropy estimators. Recent developments in the field have proposed modifications to this approach to facilitate the analysis of short-time series. However, the role of the downsampling in the classical coarse-graining process and its relationships with alternative filtering techniques has not been systematically explored yet. Here, we assess the impact of coarse-graining in multiscale entropy estimations based on both Sample Entropy and Dispersion Entropy. We compare the classical moving average approach with low-pass Butterworth filtering, both with and without downsampling, and empirical mode decomposition in Intrinsic Multiscale Entropy, in selected synthetic data and two real physiological datasets. The results show that when the sampling frequency is low or high, downsampling respectively decreases or increases the entropy values. Our results suggest that, when dealing with long signals and relatively low levels of noise, the refine composite method makes little difference in the quality of the entropy estimation at the expense of considerable additional computational cost. It is also found that downsampling within the coarse-graining procedure may not be required to quantify the complexity of signals, especially for short ones. Overall, we expect these results to contribute to the ongoing discussion about the development of stable, fast and robust-to-noise multiscale entropy techniques suited for either short or long recordings
    • 

    corecore