6,420 research outputs found

    Innovative teaching of IC design and manufacture using the Superchip platform

    No full text
    In this paper we describe how an intelligent chip architecture has allowed a large cohort of undergraduate students to be given effective practical insight into IC design by designing and manufacturing their own ICs. To achieve this, an efficient chip architecture, the “Superchip”, has been developed, which allows multiple student designs to be fabricated on a single IC, and encapsulated in a standard package without excessive cost in terms of time or resources. We demonstrate how the practical process has been tightly coupled with theoretical aspects of the degree course and how transferable skills are incorporated into the design exercise. Furthermore, the students are introduced at an early stage to the key concepts of team working, exposure to real deadlines and collaborative report writing. This paper provides details of the teaching rationale, design exercise overview, design process, chip architecture and test regime

    Differential evolution with an evolution path: a DEEP evolutionary algorithm

    Get PDF
    Utilizing cumulative correlation information already existing in an evolutionary process, this paper proposes a predictive approach to the reproduction mechanism of new individuals for differential evolution (DE) algorithms. DE uses a distributed model (DM) to generate new individuals, which is relatively explorative, whilst evolution strategy (ES) uses a centralized model (CM) to generate offspring, which through adaptation retains a convergence momentum. This paper adopts a key feature in the CM of a covariance matrix adaptation ES, the cumulatively learned evolution path (EP), to formulate a new evolutionary algorithm (EA) framework, termed DEEP, standing for DE with an EP. Without mechanistically combining two CM and DM based algorithms together, the DEEP framework offers advantages of both a DM and a CM and hence substantially enhances performance. Under this architecture, a self-adaptation mechanism can be built inherently in a DEEP algorithm, easing the task of predetermining algorithm control parameters. Two DEEP variants are developed and illustrated in the paper. Experiments on the CEC'13 test suites and two practical problems demonstrate that the DEEP algorithms offer promising results, compared with the original DEs and other relevant state-of-the-art EAs

    Enabling Data-Driven Transportation Safety Improvements in Rural Alaska

    Get PDF
    Safety improvements require funding. A clear need must be demonstrated to secure funding. For transportation safety, data, especially data about past crashes, is the usual method of demonstrating need. However, in rural locations, such data is often not available, or is not in a form amenable to use in funding applications. This research aids rural entities, often federally recognized tribes and small villages acquire data needed for funding applications. Two aspects of work product are the development of a traffic counting application for an iPad or similar device, and a review of the data requirements of the major transportation funding agencies. The traffic-counting app, UAF Traffic, demonstrated its ability to count traffic and turning movements for cars and trucks, as well as ATVs, snow machines, pedestrians, bicycles, and dog sleds. The review of the major agencies demonstrated that all the likely funders would accept qualitative data and Road Safety Audits. However, quantitative data, if it was available, was helpful

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Multimodal estimation of distribution algorithms

    Get PDF
    Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima

    Inside Out: Detecting Learners' Confusion to Improve Interactive Digital Learning Environments

    Get PDF
    Confusion is an emotion that is likely to occur while learning complex information. This emotion can be beneficial to learners in that it can foster engagement, leading to deeper understanding. However, if learners fail to resolve confusion, its effect can be detrimental to learning. Such detrimental learning experiences are particularly concerning within digital learning environments (DLEs), where a teacher is not physically present to monitor learner engagement and adapt the learning experience accordingly. However, with better information about a learner's emotion and behavior, it is possible to improve the design of interactive DLEs (IDLEs) not only in promoting productive confusion but also in preventing overwhelming confusion. This article reviews different methodological approaches for detecting confusion, such as self-report and behavioral and physiological measures, and discusses their implications within the theoretical framework of a zone of optimal confusion. The specificities of several methodologies and their potential application in IDLEs are discussed

    Low-cost methodologies and devices applied to measure, model and self-regulate emotions for Human-Computer Interaction

    Get PDF
    En aquesta tesi s'exploren les diferents metodologies d'anàlisi de l'experiència UX des d'una visió centrada en usuari. Aquestes metodologies clàssiques i fonamentades només permeten extreure dades cognitives, és a dir les dades que l'usuari és capaç de comunicar de manera conscient. L'objectiu de la tesi és proposar un model basat en l'extracció de dades biomètriques per complementar amb dades emotives (i formals) la informació cognitiva abans esmentada. Aquesta tesi no és només teòrica, ja que juntament amb el model proposat (i la seva evolució) es mostren les diferents proves, validacions i investigacions en què s'han aplicat, sovint en conjunt amb grups de recerca d'altres àrees amb èxit.En esta tesis se exploran las diferentes metodologías de análisis de la experiencia UX desde una visión centrada en usuario. Estas metodologías clásicas y fundamentadas solamente permiten extraer datos cognitivos, es decir los datos que el usuario es capaz de comunicar de manera consciente. El objetivo de la tesis es proponer un modelo basado en la extracción de datos biométricos para complementar con datos emotivos (y formales) la información cognitiva antes mencionada. Esta tesis no es solamente teórica, ya que junto con el modelo propuesto (y su evolución) se muestran las diferentes pruebas, validaciones e investigaciones en la que se han aplicado, a menudo en conjunto con grupos de investigación de otras áreas con éxito.In this thesis, the different methodologies for analyzing the UX experience are explored from a user-centered perspective. These classical and well-founded methodologies only allow the extraction of cognitive data, that is, the data that the user is capable of consciously communicating. The objective of this thesis is to propose a methodology that uses the extraction of biometric data to complement the aforementioned cognitive information with emotional (and formal) data. This thesis is not only theoretical, since the proposed model (and its evolution) is complemented with the different tests, validations and investigations in which they have been applied, often in conjunction with research groups from other areas with success
    corecore