1,224 research outputs found

    LOTOSphere:software development with LOTOS

    Get PDF
    LOTOS (Language Of Temporal Ordering Specification) became an international standard in 1989, although application of preliminary versions of the language to communication services and protocols of the ISO/OSI family dates back to 1984. This history of the use of LOTOS made it apparent that more advantages than the pure production of standard reference documents were to be expected from the use of such formal description techniques. LOTOSphere: Software Development with LOTOS describes in depth a five year project that moved LOTOS out of the ISO tower into software engineering practice. LOTOS became a vehicle for efficient, yet formally based industrial software specification, design, verification, implementation and testing. LOTOSphere: Software Development with LOTOS is divided into six parts. The first introduces the reader to LOTOS and the project LOTOSphere. The five remaining each treat an important part of the software development life cycle using LOTOS. This is the first book to give a comprehensive treatment of the use of these formal description techniques in a software engineering environment. It will thus be a valuable reference for researchers and software developers and can also be used as a text for an advanced course on the subject

    Working Notes from the 1992 AAAI Workshop on Automating Software Design. Theme: Domain Specific Software Design

    Get PDF
    The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface

    On Language Processors and Software Maintenance

    Get PDF
    This work investigates declarative transformation tools in the context of software maintenance. Besides maintenance of the language specification, evolution of a software language requires the adaptation of the software written in that language as well as the adaptation of the software that transforms software written in the evolving language. This co-evolution is studied to derive automatic adaptations of artefacts from adaptations of the language specification. Furthermore, AOP for Prolog is introduced to improve maintainability of language specifications and derived tools.Die Arbeit unterstützt deklarative Transformationswerkzeuge im Kontext der Softwarewartung. Neben der Wartung der Sprachbeschreibung erfordert die Evolution einer Sprache sowohl die Anpassung der Software, die in dieser Sprache geschrieben ist als auch die Anpassung der Software, die diese Software transformiert. Diese Koevolution wird untersucht, um automatische Anpassungen von Artefakten von Anpassungen der Sprachbeschreibungen abzuleiten. Weiterhin wird AOP für Prolog eingeführt, um die Wartbarkeit von Sprachbeschreibungen und den daraus abgeleiteten Werkzeugen zu erhöhen

    Specification Languages for Preserving Consistency between Models of Different Languages

    Get PDF
    In dieser Dissertation stellen wir drei Sprachen für die Entwicklung von Werkzeugen vor, welche Systemrepräsentationen während der Softwareentwicklung konsistent halten. Bei der Entwicklung komplexer informationstechnischer Systeme ist es üblich, mehrere Programmiersprachen und Modellierungssprachen zu nutzen. Dabei werden Teile des Systems mit unterschiedlichen Sprachen konstruiert und dargestellt, um verschiedene Entwurfs- und Entwicklungstätigkeiten zu unterstützen. Die übergreifende Struktur eines Systems wird beispielsweise oft mit Hilfe einer Architekturbeschreibungssprache dargestellt. Für die Spezifikation des detaillierten Verhaltens einzelner Systemteile ist hingegen eine zustandsbasierte Modellierungssprache oder eine Allzweckprogrammiersprache geeigneter. Da die Systemteile und Entwicklungstätigkeiten in Beziehung zueinander stehen, enthalten diese Repräsentationen oftmals auch redundante Informationen. Solche partiell redundanten Repräsentationen werden meist nicht statisch genutzt, sondern evolvieren während der Systementwicklung, was zu Inkonsistenzen und damit zu fehlerhaften Entwürfen und Implementierungen führen kann. Daher sind konsistente Systemrepräsentationen entscheidend für die Entwicklung solcher Systeme. Es gibt verschiedene Ansätze, die konsistente Systemrepräsentationen dadurch erreichen, dass Inkonsistenzen vermieden werden. So ist es beispielsweise möglich, eine zentrale, redundanzfreie Repräsentation zu erstellen, welche alle Informationen enthält, um alle anderen Repräsentationen daraus projizieren zu können. Es ist jedoch nicht immer praktikabel solch eine redundanzfreie Repräsentation und editierbare Projektionen zu erstellen, insbesondere wenn existierende Sprachen und Editoren unterstützt werden müssen. Eine weitere Möglichkeit zur Umgehung von Inkonsistenzen besteht darin Änderungen einzelner Informationen nur an einer eindeutigen Quellrepräsentation zuzulassen, sodass alle anderen Repräsentationen diese Information nur lesen können. Dadurch können solche Informationen in allen lesend zugreifenden Repräsentationen immer überschrieben werden, jedoch müssen dazu alle editierbaren Repräsentationsbereiche komplett voneinander getrennt werden. Falls inkonsistente Repräsentationen während der Systementwicklung nicht völlig vermieden werden können, müssen Entwickler oder Werkzeuge aktiv die Konsistenz erhalten, wenn Repräsentationen modifiziert werden. Die manuelle Konsistenthaltung ist jedoch eine zeitaufwändige und fehleranfällige Tätigkeit. Daher werden in Forschungseinrichtungen und in der Industrie Konsistenthaltungswerkzeuge entwickelt, die teilautomatisiert Modelle während der Systementwicklung aktualisieren. Solche speziellen Software-Entwicklungswerkzeuge können mit Allzweckprogrammiersprachen und mit dedizierten Konsistenthaltungssprachen entwickelt werden. In dieser Dissertation haben wir vier bedeutende Herausforderungen identifiziert, die momentan nur unzureichend von Sprachen zur Entwicklung von Konsistenthaltungswerkzeugen adressiert werden. Erstens kombinieren diese Sprachen spezifische Unterstützung zur Konsistenthaltung nicht mit der Ausdrucksmächtigkeit und Flexibilität etablierter Allzweckprogrammiersprachen. Daher sind Entwickler entweder auf ausgewiesene Anwendungsfälle beschränkt, oder sie müssen wiederholt Lösungen für generische Konsistenthaltungsprobleme entwickeln. Zweitens unterstützen diese Sprachen entweder lösungs- oder problemorientierte Programmierparadigmen, sodass Entwickler gezwungen sind, Erhaltungsinstruktionen auch in Fällen anzugeben, in denen Konsistenzdeklarationen ausreichend wären. Drittens abstrahieren diese Sprachen nicht von genügend Konsistenthaltungsdetails, wodurch Entwickler explizit beispielsweise Erhaltungsrichtungen, Änderungstypen oder Übereinstimmungsprobleme berücksichtigen müssen. Viertens führen diese Sprachen zu Erhaltungsverhalten, das oft vom konkreten Anwendungsfall losgelöst zu sein scheint, wenn Interpreter und Übersetzer Code ausführen oder erzeugen, der zur Realisierung einer spezifischen Konsistenzspezifikation nicht benötigt wird. Um diese Probleme aktueller Ansätze zu adressieren, leistet diese Dissertation die folgenden Beiträge: Erstens stellen wir eine Sammlung und Klassifizierung von Herausforderungen der Konsistenthaltung vor. Dabei diskutieren wir beispielsweise, welche Herausforderungen nicht bereits adressiert werden sollten, wenn Konsistenz spezifiziert wird, sondern erst wenn sie durchgesetzt wird. Zweitens führen wir einen Ansatz zur Erhaltung von Konsistenz gemäß abstrakter Spezifikationen ein und formalisieren ihn mengentheoretisch. Diese Formalisierung ist unabhängig davon wie Konsistenzdurchsetzungen letztendlich realisiert werden. Mit dem vorgestellten Ansatz wird Konsistenz immer anhand von beobachteten Editieroperationen bewahrt, um bekannte Probleme zur Berechnung von Übereinstimmungen und Differenzen zu vermeiden. Schließlich stellen wir drei neue Sprachen zur Entwicklung von Werkzeugen vor, die den vorgestellten, spezifikationsgeleiteten Ansatz verfolgen und welche wir im Folgenden kurz erläutern. Wir präsentieren eine imperative Sprache, die verwendet werden kann, um präzise zu spezifizieren, wie Modelle in Reaktion auf spezifische Änderungen aktualisiert werden müssen, um Konsistenz in eine Richtung zu erhalten. Diese Reaktionssprache stellt Lösungen für häufige Probleme bereit, wie beispielsweise die Identifizierung und das Abrufen geänderter oder korrespondierender Modellelemente. Außerdem erreicht sie eine uneingeschränkte Ausdrucksmächtigkeit, indem sie Entwicklern ermöglicht, auf eine Allzweckprogrammiersprache zurückzugreifen. Eine zweite, bidirektionale Sprache für abstrakte Abbildungen kann für Fälle verwendet werden, in denen verschiedene Änderungsoperationen nicht unterschieden werden müssen und außerdem die Erhaltungsrichtung nicht immer eine Rolle spielt. Mit dieser Abbildungssprache können Entwickler Bedingungen deklarieren, die ausdrücken, wann Modellelemente als konsistent zueinander angesehen werden sollen, ohne sich um Details der Überprüfung oder Durchsetzung von Konsistenz bemühen zu müssen. Dazu leitet der Übersetzer automatisch Durchsetzungscode aus Überprüfungen ab und bidirektionalisiert Bedingungen, die für eine Richtung der Konsistenthaltung spezifiziert wurden. Diese Bidirektionalisierung basiert auf einer erweiterbaren Menge von komponierbaren, operatorspezifischen Invertierern, die verbreitete Round-trip-Anforderungen erfüllen. Infolgedessen können Entwickler häufig vorkommende Konsistenzanforderungen konzise ausdrücken und müssen keinen Quelltext für verschiedene Konsistenthaltungsrichtungen, Änderungstypen oder Eigenschaften von Modellelementen wiederholen. Eine dritte, normative Sprache kann verwendet werden, um die vorherigen Sprachen mit parametrisierbaren Konsistenzinvarianten zu ergänzen. Diese Invariantensprache übernimmt Operatoren und Iteratoren für Elementsammlungen von der Object Constraint Language (OCL). Außerdem nimmt sie Entwicklern das Schreiben von Quelltext zur Suche nach invariantenverletzenden Elementen ab, da Abfragen, welche diese Aufgaben übernehmen, automatisch anhand von Invariantenparametern abgeleitet werden. Die drei Sprachen können in Kombination und einzeln verwendet werden. Sie ermöglichen es Entwicklern, Konsistenz unter Verwendung verschiedener Programmierparadigmen und Sprachabstraktionen zu spezifizieren. Wir stellen auch prototypische Übersetzer und Editoren für die drei Konsistenzspezifikationssprachen vor, welche auf dem Vitruvius-Rahmenwerk für Multi-Sichten-Modellierung basieren. Mit diesem Rahmenwerk werden Änderungen in textuellen und graphischen Editoren automatisch beobachtet, um Reaktionen auszulösen, Abbildungen durchzusetzen und Invarianten zu überprüfen. Dies geschieht indem der von unseren Übersetzern erzeugte Java-Code ausgeführt wird. Außerdem haben wir für alle Sprachen, die in dieser Dissertation vorgestellt werden, folgende theoretischen und praktischen Eigenschaften evaluiert: Vollständigkeit, Korrektheit, Anwendbarkeit, und Nutzen. So zeigen wir, dass die Sprachen ihre vorgesehenen Einsatzbereiche vollständig abdecken und analysieren ihre Berechnungsvollständigkeit. Außerdem diskutieren wir die Korrektheit jeder einzelnen Sprache sowie die Korrektheit einzelner Sprachmerkmale. Die operatorspezifischen Invertierer, die wir zur Bidirektionalisierung von Abbildungsbedingungen entwickelt haben, erfüllen beispielsweise immer das neu eingeführte Konzept bestmöglich erzogener Round-trips. Dieses basiert auf dem bewährten Konzept wohlerzogener Transformationen und garantiert, dass übliche Round-trip-Gesetze erfüllt werden, wann immer dies möglich ist. Wir veranschaulichen die praktische Anwendbarkeit mit Fallstudien, in denen Konsistenz erfolgreich mit Hilfe von Werkzeugen erhalten wurde, die in den von uns vorgestellten Sprachen geschrieben wurden. Zum Schluss diskutieren wir den potenziellen Nutzen unserer Sprachen und vergleichen beispielsweise Konsistenthaltungswerkzeuge die in zwei Fallstudien realisiert wurden. Die Werkzeuge, die mit der Reaktionssprache entwickelt wurden, benötigen zwischen 33% und 71% weniger Zeilen Quelltext als funktional gleichwertige Werkzeuge, die mit in Java oder dem Java-Dialekt Xtend entwickelt wurden

    Building Transformation Networks for Consistent Evolution of Interrelated Models

    Get PDF
    Complex software systems are described with multiple artifacts, such as code, design diagrams and others. Ensuring their consistency is crucial and can be automated with transformations for pairs of artifacts. We investigate how developers can combine independently developed and reusable transformations to networks that preserve consistency between more than two artifacts. We identify synchronization, compatibility and orchestration as central challenges, and we develop approaches to solve them

    Building Transformation Networks for Consistent Evolution of Interrelated Models

    Get PDF
    In dieser Dissertation formalisieren und analysieren wir die Konsistenzerhaltung verschiedener Artefakte zur Beschreibung eines Softwaresystems durch die Kopplung von Transformationen zwischen diesen und unterstützen sie mit geeigneten Methoden. Für die Entwicklung eines Softwaresystems nutzen Entwickler:innen und weitere Beteiligte verschiedene Sprachen, oder allgemein Werkzeuge, zur Beschreibung unterschiedlicher Belange. Meist stellt Programmcode das zentrale Artefakt dar, welches jedoch, implizit oder explizit, durch Spezifikationen von Architektur, Deployment, Anforderungen und anderen ergänzt wird. Neben der Programmiersprache verwenden die Beteiligten weitere Sprachen zur Spezifikation dieser Artefakte, beispielsweise die UML für Modelle des objektorientierten Entwurfs oder der Architektur, den OpenAPI-Standard für Schnittstellen-Definitionen, oder Docker für Deployment-Spezifikationen. Zur Erstellung eines funktionsfähigen Softwaresystems müssen diese Artefakte das System einheitlich und widerspruchsfrei darstellen. Beispielsweise müssen Dienst-Schnittstellen in allen Artefakten einheitlich repräsentiert sein. Wir sagen, die Artefakte müssen konsistent sein. In der modellgetriebenen Entwicklung werden solche verschiedenen Artefakte allgemein Modelle genannt und bereits als wesentliche zentrale Entwicklungsbestandteile genutzt, um auch Teile des Programmcodes aus ihnen abzuleiten. Dies betrifft beispielsweise die Softwareentwicklung für Fahrzeuge. Zur Konsistenzerhaltung der Modelle werden oftmals Transformationen eingesetzt, die nach Änderungen eines Modells die anderen Modelle anpassen. Die bisherige Forschung beschränkt sich auf Transformationen zur Konsistenzerhaltung zweier Modelle und die projektspezifische Kombination von Transformationen zur Konsistenzerhaltung mehrerer Modelle. Ein systematischer Entwicklungsprozess, in dem einzelne Transformationen unabhängig entwickelt und in verschiedenen Kontexten modular wiederverwendet werden können, wird hierdurch jedoch nicht unterstützt. In dieser Dissertation erforschen wir, wie Entwickler:innen mehrere Transformationen zu einem Netzwerk kombinieren können, welches die Transformationen in einer geeigneten Reihenfolge ausführen kann, sodass abschließend alle Modelle konsistent zueinander sind. Dies geschieht unter der Annahme, dass einzelne Transformationen zwischen zwei Sprachen unabhängig voneinander entwickelt werden und daher nicht aufeinander abgestimmt werden können. Unsere Beiträge unterteilen sich in die Untersuchung der Korrektheit einer solchen Kombination von Transformationen zu einem Netzwerk und die Optimierung von Qualitätseigenschaften solcher Netzwerke. Wir diskutieren und definieren zunächst einen adäquaten Korrektheitsbegriff, welcher drei Anforderungen impliziert. Diese umfassen eine Synchronisations-Eigenschaft für die einzelnen Transformationen, eine Kompatibilitäts-Eigenschaft für das Transformationsnetzwerk, sowie das Finden einer geeigneten Ausführungsreihenfolge der Transformationen, einer Orchestrierung. Wir stellen ein Konstruktionsverfahren für Transformationen vor, mit welchem die Synchronisations-Eigenschaft basierend auf einer formal bewiesenen Eigenschaft erfüllt wird. Für dieses zeigen wir Vollständigkeit und Angemessenheit mit einer fallstudienbasierten empirischen Evaluation in der Domäne der komponentenbasierten Softwareentwicklung. Wir definieren die Eigenschaft der Kompatibilität von Transformationen, für welche wir ein formales und bewiesen korrektes Analyseverfahren vorschlagen und eine praktische Realisierung ableiten, deren Anwendbarkeit wir in Fallstudien nachweisen. Schlussendlich definieren wir das Orchestrierungsproblem zum Finden einer Orchestrierung, die zu konsistenten Modelle führt wann immer solch eine Orchestrierung existiert. Wir beweisen die Unentscheidbarkeit dieses Problems und diskutieren, dass eine Einschränkung des Problems, um Entscheidbarkeit zu erreichen, die Anwendbarkeit unpraktikabel beschränken würde. Daher schlagen wir einen Algorithmus vor, der das Problem konservativ behandelt. Er findet eine Orchestrierung unter bestimmten, wohldefinierten Bedingungen und terminiert andernfalls mit einem Fehler. Wir beweisen die Korrektheit des Algorithmus und eine Eigenschaft, die das Finden der Ursache im Fehlerfall unterstützt. Zusätzlich kategorisieren wir Fehler, die auftreten können falls ein Netzwerk den definierten Korrektheitsbegriff nicht erfüllt. Daraus leiten wir mittels den bereits genannten Fallstudien ab, dass die meisten potentiellen Fehler per Konstruktion mit den in dieser Arbeit vorgeschlagenen Ansätzen vermieden werden können. Zur Untersuchung von Qualitätseigenschaften eines Netzwerkes von Transformationen klassifizieren wir zunächst relevante Eigenschaften, sowie den Effekt verschiedener Typen von Netzwerktopologien auf diese. Hierbei zeigt sich, dass insbesondere Korrektheit und Wiederverwendbarkeit im Widerspruch stehen, sodass die Wahl der Netzwerktopologie ein Abwägen bei der Optimierung dieser Eigenschaften erfordert. Wir leiten hieraus ein Konstruktionsverfahren für Transformationsnetzwerke ab, welches die Notwendigkeit einer Abwägung zwischen den Qualitätseigenschaften abmildert und, unter gewissen Voraussetzungen, Korrektheit per Konstruktion gewährleistet. Wir unterstützen den Entwicklungsprozess für diesen Ansatz mithilfe einer spezialisierten Spezifikationssprache. Während die Verminderung der Notwendigkeit einer Abwägung zwischen Qualitätseigenschaften durch den Ansatz per Konstruktion erreicht wird, zeigen wir die Erreichbarkeit der Voraussetzungen und die Vorteile der vorgeschlagenen Sprache in einer empirischen Evaluation mithilfe der Fallstudie aus der komponentenbasierten Softwareentwicklung. Die Beiträge dieser Dissertation unterstützen sowohl Forscher:innen als auch Transformationsentwickler:innen und Transformationsanwender:innen bei der Analyse und Konstruktion von Netzwerken von Transformationen. Sie stellen für Forscher:innen und Transformationsentwickler:innen systematisches Wissen über die Korrektheit und weitere Qualitätseigenschaften solcher Netzwerke bereit. Sie zeigen insbesondere welche Teile dieser Eigenschaften per Konstruktion erreicht werden können, welche per Analyse validiert werden können, und welche Fehler unvermeidbar bei der Ausführung erwartet werden müssen. Zusätzlich zu diesen Einsichten stellen wir konkrete, praktisch nutzbare Verfahren bereit, mit denen Transformationsentwickler:innen und Transformationsanwender:innen korrekte, modular wiederverwendbare Netzwerke konstruieren, analysieren und ausführen können

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    A method for maintaining new software

    Get PDF
    This thesis describes a novel method for perfective maintenance of software which has been developed from specifications using formal transformations. The list of applied transformations provides a suitable derivation history to use when changes are made to the software. The method uses transformations which have been implemented in a tool called the Maintainer's Assistant for the purposes of restructuring code. The method uses these transformations for refinement. Comparisons are made between sequential transformations, refinement calculi and standard proof based refinement techniques for providing a suitable derivation history to use when changes are made in the requirements of a system. Two case studies are presented upon which these comparisons are based and on which the method is tested. Criteria such as saleability, speed, ease, design improvements and software quality is used to argue that transformations are a more favourable basis of refinement. Metrics are used to evaluate the complexity of the code developed using the method. Conclusions of how to develop different types of specifications into code and on how best to apply various changes are presented. An approach which is recommended is to use transformations for splitting the specification so that original refinement paths can still be used. Using transformations for refining a specification and recording this path produces software of a better structure and of higher maintainability. Having such a path improves the speed and ease of future alterations to the system. This is more cost effective than redeveloping the software from a new specification

    Applications of agent architectures to decision support in distributed simulation and training systems

    Get PDF
    This work develops the approach and presents the results of a new model for applying intelligent agents to complex distributed interactive simulation for command and control. In the framework of tactical command, control communications, computers and intelligence (C4I), software agents provide a novel approach for efficient decision support and distributed interactive mission training. An agent-based architecture for decision support is designed, implemented and is applied in a distributed interactive simulation to significantly enhance the command and control training during simulated exercises. The architecture is based on monitoring, evaluation, and advice agents, which cooperate to provide alternatives to the dec ision-maker in a time and resource constrained environment. The architecture is implemented and tested within the context of an AWACS Weapons Director trainer tool. The foundation of the work required a wide range of preliminary research topics to be covered, including real-time systems, resource allocation, agent-based computing, decision support systems, and distributed interactive simulations. The major contribution of our work is the construction of a multi-agent architecture and its application to an operational decision support system for command and control interactive simulation. The architectural design for the multi-agent system was drafted in the first stage of the work. In the next stage rules of engagement, objective and cost functions were determined in the AWACS (Airforce command and control) decision support domain. Finally, the multi-agent architecture was implemented and evaluated inside a distributed interactive simulation test-bed for AWACS Vv\u27Ds. The evaluation process combined individual and team use of the decision support system to improve the performance results of WD trainees. The decision support system is designed and implemented a distributed architecture for performance-oriented management of software agents. The approach provides new agent interaction protocols and utilizes agent performance monitoring and remote synchronization mechanisms. This multi-agent architecture enables direct and indirect agent communication as well as dynamic hierarchical agent coordination. Inter-agent communications use predefined interfaces, protocols, and open channels with specified ontology and semantics. Services can be requested and responses with results received over such communication modes. Both traditional (functional) parameters and nonfunctional (e.g. QoS, deadline, etc.) requirements and captured in service requests
    corecore