2,847 research outputs found

    Comparison of Subgrid-scale Viscosity Models and Selective Filtering Strategy for Large-eddy Simulations

    Get PDF
    Explicitly filtered large-eddy simulations (LES), combining high-accuracy schemes with the use of a selective filtering without adding an explicit subgrid-scales (SGS) model, are carried out for the Taylor-Green-vortex and the supersonic-boundary-layer cases. First, the present approach is validated against direct numerical simulation (DNS) results. Subsequently, several SGS models are implemented in order to investigate if they can improve the initial filter-based methodology. It is shown that the most accurate results are obtained when the filtering is used alone as an implicit model, and for a minimal cost. Moreover, the tests for the Taylor-Green vortex indicate that the discretization error from the numerical methods, notably the dissipation error from the high-order filtering, can have a greater influence than the SGS models

    Numerical studies towards practical large-eddy simulation

    Get PDF
    Large-eddy simulation developments and validations are presented for an improved simulation of turbulent internal flows. Numerical methods are proposed according to two competing criteria: numerical qualities (precision and spectral characteristics), and adaptability to complex configurations. First, methods are tested on academic test-cases, in order to abridge with fundamental studies. Consistent results are obtained using adaptable finite volume method, with higher order advection fluxes, implicit grid filtering and "low-cost" shear-improved Smagorinsky model. This analysis particularly focuses on mean flow, fluctuations, two-point correlations and spectra. Moreover, it is shown that exponential averaging is a promising tool for LES implementation in complex geometry with deterministic unsteadiness. Finally, adaptability of the method is demonstrated by application to a configuration representative of blade-tip clearance flow in a turbomachine

    LES evaluation of the effects of equivalence ratio fluctuations on the dynamic flame response in a real gas turbine combustion chamber

    Get PDF
    Large Eddy Simulations (LES) of a lean swirl-stabilized gas turbine burner are used to analyze mechanisms triggering combustion instabilities. To separately study the effect of velocity and equivalence ratio fluctuations, two LES of the same geometry are performed: one where the burner operates in a “technically” premixed mode (methane is injected by holes in the vanes located in the diagonal passage upstream of the chamber) and the second one where the flow is fully premixed in the diagonal passage. The inlet is acoustically modulated and the mechanisms affecting the dynamic flame response are identified. LES reveals that both cases provide similar averaged (non-)pulsated flame shapes. However, even though the mean flames are only slightly modified, the delays change when mixing is not perfect. LES fields and a simple model for the methane jets trajectories show that mixing in the diagonal passage is not sufficient to damp heterogeneities induced by unsteady fuel flow rate and varying fuel jet trajectories. These mixing fluctuations are phased with velocity oscillations and modify the flame response to forcing. Local fields of delays and interaction indices are obtained, showing that the flame is not compact and is affected by fluctuations of mixing

    Turbulence-resolving simulations of wind turbine wakes

    Full text link
    Turbulence-resolving simulations of wind turbine wakes are presented using a high--order flow solver combined with both a standard and a novel dynamic implicit spectral vanishing viscosity (iSVV and dynamic iSVV) model to account for subgrid-scale (SGS) stresses. The numerical solutions are compared against wind tunnel measurements, which include mean velocity and turbulent intensity profiles, as well as integral rotor quantities such as power and thrust coefficients. For the standard (also termed static) case the magnitude of the spectral vanishing viscosity is selected via a heuristic analysis of the wake statistics, while in the case of the dynamic model the magnitude is adjusted both in space and time at each time step. The study focuses on examining the ability of the two approaches, standard (static) and dynamic, to accurately capture the wake features, both qualitatively and quantitatively. The results suggest that the static method can become over-dissipative when the magnitude of the spectral viscosity is increased, while the dynamic approach which adjusts the magnitude of dissipation locally is shown to be more appropriate for a non-homogeneous flow such that of a wind turbine wake

    Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research

    Get PDF
    This paper presents the results of an activity by the Large Eddy Simulation (LES) Working Group of the AIAA Fluid Dynamics Technical Committee to (1) address the current capabilities of LES, (2) outline recommended practices and key considerations for using LES, and (3) identify future research needs to advance the capabilities and reliability of LES for analysis of turbulent flows. To address the current capabilities and future needs, a survey comprised of eleven questions was posed to LES Working Group members to assemble a broad range of perspectives on important topics related to LES. The responses to these survey questions are summarized with the intent not to be a comprehensive dictate on LES, but rather the perspective of one group on some important issues. A list of recommended practices is also provided, which does not treat all aspects of a LES, but provides guidance on some of the key areas that should be considered
    corecore