1,192 research outputs found

    A Survey From Distributed Machine Learning to Distributed Deep Learning

    Full text link
    Artificial intelligence has achieved significant success in handling complex tasks in recent years. This success is due to advances in machine learning algorithms and hardware acceleration. In order to obtain more accurate results and solve more complex problems, algorithms must be trained with more data. This huge amount of data could be time-consuming to process and require a great deal of computation. This solution could be achieved by distributing the data and algorithm across several machines, which is known as distributed machine learning. There has been considerable effort put into distributed machine learning algorithms, and different methods have been proposed so far. In this article, we present a comprehensive summary of the current state-of-the-art in the field through the review of these algorithms. We divide this algorithms in classification and clustering (traditional machine learning), deep learning and deep reinforcement learning groups. Distributed deep learning has gained more attention in recent years and most of studies worked on this algorithms. As a result, most of the articles we discussed here belong to this category. Based on our investigation of algorithms, we highlight limitations that should be addressed in future research

    Rapid Prototyping of Embedded Vision Systems: Embedding Computer Vision Applications into Low-Power Heterogeneous Architectures

    Get PDF
    Embedded vision is a disruptive new technology in the vision industry. It is a revolutionary concept with far reaching implications, and it is opening up new applications and shaping the future of entire industries. It is applied in self-driving cars, autonomous vehicles in agriculture, digital dermascopes that help specialists make more accurate diagnoses, among many other unique and cutting-edge applications. The design of such systems gives rise to new challenges for embedded Software developers. Embedded vision applications are characterized by stringent performance constraints to guarantee real-time behaviours and, at the same time, energy constraints to save battery on the mobile platforms. In this paper, we address such challenges by proposing an overall view of the problem and by analysing current solutions. We present our last results on embedded vision design automation over two main aspects: the adoption of the model-based paradigm for the embedded vision rapid prototyping, and the application of heterogeneous programming languages to improve the system performance. The paper presents our recent results on the design of a localization and mapping application combined with image recognition based on deep learning optimized for an NVIDIA Jetson TX2

    Parallel programming paradigms and frameworks in big data era

    Get PDF
    With Cloud Computing emerging as a promising new approach for ad-hoc parallel data processing, major companies have started to integrate frameworks for parallel data processing in their product portfolio, making it easy for customers to access these services and to deploy their programs. We have entered the Era of Big Data. The explosion and profusion of available data in a wide range of application domains rise up new challenges and opportunities in a plethora of disciplines-ranging from science and engineering to biology and business. One major challenge is how to take advantage of the unprecedented scale of data-typically of heterogeneous nature-in order to acquire further insights and knowledge for improving the quality of the offered services. To exploit this new resource, we need to scale up and scale out both our infrastructures and standard techniques. Our society is already data-rich, but the question remains whether or not we have the conceptual tools to handle it. In this paper we discuss and analyze opportunities and challenges for efficient parallel data processing. Big Data is the next frontier for innovation, competition, and productivity, and many solutions continue to appear, partly supported by the considerable enthusiasm around the MapReduce paradigm for large-scale data analysis. We review various parallel and distributed programming paradigms, analyzing how they fit into the Big Data era, and present modern emerging paradigms and frameworks. To better support practitioners interesting in this domain, we end with an analysis of on-going research challenges towards the truly fourth generation data-intensive science.Peer ReviewedPostprint (author's final draft

    EvoX: A Distributed GPU-accelerated Library towards Scalable Evolutionary Computation

    Full text link
    During the past decades, evolutionary computation (EC) has demonstrated promising potential in solving various complex optimization problems of relatively small scales. Nowadays, however, ongoing developments in modern science and engineering are bringing increasingly grave challenges to the conventional EC paradigm in terms of scalability. As problem scales increase, on the one hand, the encoding spaces (i.e., dimensions of the decision vectors) are intrinsically larger; on the other hand, EC algorithms often require growing numbers of function evaluations (and probably larger population sizes as well) to work properly. To meet such emerging challenges, not only does it require delicate algorithm designs, but more importantly, a high-performance computing framework is indispensable. Hence, we develop a distributed GPU-accelerated algorithm library -- EvoX. First, we propose a generalized workflow for implementing general EC algorithms. Second, we design a scalable computing framework for running EC algorithms on distributed GPU devices. Third, we provide user-friendly interfaces to both researchers and practitioners for benchmark studies as well as extended real-world applications. To comprehensively assess the performance of EvoX, we conduct a series of experiments, including: (i) scalability test via numerical optimization benchmarks with problem dimensions/population sizes up to millions; (ii) acceleration test via a neuroevolution task with multiple GPU nodes; (iii) extensibility demonstration via the application to reinforcement learning tasks on the OpenAI Gym. The code of EvoX is available at https://github.com/EMI-Group/EvoX

    HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges

    Full text link
    High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources---steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR

    Computational Methods in Science and Engineering : Proceedings of the Workshop SimLabs@KIT, November 29 - 30, 2010, Karlsruhe, Germany

    Get PDF
    In this proceedings volume we provide a compilation of article contributions equally covering applications from different research fields and ranging from capacity up to capability computing. Besides classical computing aspects such as parallelization, the focus of these proceedings is on multi-scale approaches and methods for tackling algorithm and data complexity. Also practical aspects regarding the usage of the HPC infrastructure and available tools and software at the SCC are presented
    • …
    corecore