2,271 research outputs found

    Unit Commitment Problem in Electrical Power System: A Literature Review

    Get PDF
    Unit commitment (UC) is a popular problem in electric power system that aims at minimizing the total cost of power generation in a specific period, by defining an adequate scheduling of the generating units. The UC solution must respect many operational constraints. In the past half century, there was several researches treated the UC problem. Many works have proposed new formulations to the UC problem, others have offered several methodologies and techniques to solve the problem. This paper gives a literature review of UC problem, its mathematical formulation, methods for solving it and Different approaches developed for addressing renewable energy effects and uncertainties

    Optimization methods for electric power systems: An overview

    Get PDF
    Power systems optimization problems are very difficult to solve because power systems are very large, complex, geographically widely distributed and are influenced by many unexpected events. It is therefore necessary to employ most efficient optimization methods to take full advantages in simplifying the formulation and implementation of the problem. This article presents an overview of important mathematical optimization and artificial intelligence (AI) techniques used in power optimization problems. Applications of hybrid AI techniques have also been discussed in this article

    Wind Integrated Thermal Unit Commitment Solution Using Grey Wolf Optimizer

    Get PDF
    The augment of ecological shield and the progressive exhaustion of traditional fossil energy sources have increased the interests in integrating renewable energy sources into existing power system. Wind power is becoming worldwide a significant component of the power generation portfolio. Profuse literature have been reported for the thermal Unit Commitment (UC) solution. In this work, the UC problem has been formulated by integrating wind power generators along with thermal power system. The Wind Generator Integrated UC (WGIUC) problem is more complex in nature, that necessitates a promising optimization tool. Hence, the modern bio-inspired algorithm namely, Grey Wolf Optimization (GWO) algorithm has been chosen as the main optimization tool and real coded scheme has been incorporated to handle the operational constraints. The standard test systems are used to validate the potential of the GWO algorithm. Moreover, the ramp rate limits are also included in the mathematical WGIUC formulation. The simulation results prove that the intended algorithm has the capability of obtaining economical resolutions with good solution quality

    Optimal design of adaptive power scheduling using modified ant colony optimization algorithm

    Get PDF
    For generating and distributing an economic load scheduling approach, artificial neural network (ANN) has been introduced, because power generation and power consumption are economically non-identical. An efficient load scheduling method is suggested in this paper. Normally the power generation system fails due to its instability at peak load time. Traditionally, load shedding process is used in which low priority loads are disconnected from sources. The proposed method handles this problem by scheduling the load based on the power requirements. In many countries the power systems are facing limitations of energy. An efficient optimization algorithm is used to periodically schedule the load demand and the generation. Ant colony optimization (ACO) based ANN is used for this optimal load scheduling process. The present work analyse the technical economical and time-dependent limitations. Also the works meets the demanded load with minimum cost of energy. Inorder to train ANN back propagation (BP) technics is used. A hybrid training process is described in this work. Global optimization algorithms are used to provide back propagation with good initial connection weights

    SHORT TERM HYDRO THERMAL SCHEDULING PROBLEM: A REVIEW

    Get PDF
    Operation of a system having both hydro and thermal plants is far more complex and is of much more importance in a modern interconnected power system. The objective of the STHS problem is to optimize the electricity production, considering a short-term planning horizon. This paper presents an extensive review of a short term hydro thermal scheduling problem. The paper demonstrates results of various evolutionary and analytical methods applied on a short term hydro thermal scheduling problem .All the assumptions made and a brief description of the solution methods is presented in the paper. The paper provides helpful information and resources for the future studies for researchers those interested in the problem or intending to do additional research in this area
    corecore