2,251 research outputs found

    A 4D information system for the exploration of multitemporal images and maps using photogrammetry, web technologies and VR/AR

    Full text link
    [EN] This contribution shows the comparison, investigation, and implementation of different access strategies on multimodal data. The first part of the research is structured as a theoretical part opposing and explaining the terms of conventional access, virtual archival access, and virtual museums while additionally referencing related work. Especially, issues that still persist in repositories like the ambiguity or missing of metadata is pointed out. The second part explains the practical implementation of a workflow from a large image repository to various four-dimensional applications. Mainly, the filtering of images and in the following, the orientation of images is explained. Selection of the relevant images is partly done manually but also with the use of deep convolutional neural networks for image classification. In the following, photogrammetric methods are used for finding the relative orientation between image pairs in a projective frame. For this purpose, an adapted Structure from Motion (SfM) workflow is presented, in which the step of feature detection and matching is replaced by the Radiant-Invariant Feature Transform (RIFT) and Matching On Demand with View Synthesis (MODS). Both methods have been evaluated on a benchmark dataset and performed superior than other approaches. Subsequently, the oriented images are placed interactively and in the future automatically in a 4D browser application showing images, maps, and building models Further usage scenarios are presented in several Virtual Reality (VR) and Augmented Reality (AR) applications. The new representation of the archival data enables spatial and temporal browsing of repositories allowing the research of innovative perspectives and the uncovering of historical details.Highlights:Strategies for a completely automated workflow from image repositories to four-dimensional (4D) access approaches.The orientation of historical images using adapted and evaluated feature matching methods.4D access methods for historical images and 3D models using web technologies and Virtual Reality (VR)/Augmented Reality (AR).[ES] Esta contribución muestra la comparación, investigación e implementación de diferentes estrategias de acceso a datos multimodales. La primera parte de la investigación se estructura en una parte teórica en la que se oponen y explican los términos de acceso convencional, acceso a los archivos virtuales, y museos virtuales, a la vez que se hace referencia a trabajos relacionados. En especial, se señalan los problemas que aún persisten en los repositorios, como la ambigüedad o la falta de metadatos. La segunda parte explica la implementación práctica de un flujo de trabajo desde un gran repositorio de imágenes a varias aplicaciones en cuatro dimensiones (4D). Principalmente, se explica el filtrado de imágenes y, a continuación, la orientación de las mismas. La selección de las imágenes relevantes se hace en parte manualmente, pero también con el uso de redes neuronales convolucionales profundas para la clasificación de las imágenes. A continuación, se utilizan métodos fotogramétricos para encontrar la orientación relativa entre pares de imágenes en un marco proyectivo. Para ello, se presenta un flujo de trabajo adaptado a partir de Structure from Motion, (SfM), en el que el paso de la detección y la correspondencia de entidades es sustituido por la Transformación de entidades invariante a la radiancia (Radiant-Invariant Feature Transform, RIFT) y la Correspondencia a demanda con vistas sintéticas (Matching on Demand with View Synthesis, MODS). Ambos métodos han sido evaluados sobre la base de un conjunto de datos de referencia y funcionaron mejor que otros procedimientos. Posteriormente, las imágenes orientadas se colocan interactivamente y en el futuro automáticamente en una aplicación de navegador 4D que muestra imágenes, mapas y modelos de edificios. Otros escenarios de uso se presentan en varias aplicación es de Realidad Virtual (RV) y Realidad Aumentada (RA). La nueva representación de los datos archivados permite la navegación espacial y temporal de los repositorios, lo que permite la investigación en perspectivas innovadoras y el descubrimiento de detalles históricos.The research upon which this paper is based is part of the junior research group UrbanHistory4D’s activities which has received funding from the German Federal Ministry of Education and Research under grant agreement No 01UG1630. This work was supported by the German Federal Ministry of Education and Research (BMBF, 01IS18026BA-F) by funding the competence center for Big Data “ScaDS Dresden/Leipzig”.Maiwald, F.; Bruschke, J.; Lehmann, C.; Niebling, F. (2019). Un sistema de información 4D para la exploración de imágenes y mapas multitemporales utilizando fotogrametría, tecnologías web y VR/AR. Virtual Archaeology Review. 10(21):1-13. https://doi.org/10.4995/var.2019.11867SWORD1131021Ackerman, A., & Glekas, E. (2017). Digital Capture and Fabrication Tools for Interpretation of Historic Sites. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W2, 107-114. doi:10.5194/isprs-annals-IV-2-W2-107-2017Armingeon, M., Komani, P., Zanwar, T., Korkut, S., & Dornberger, R. (2019). A Case Study: Assessing Effectiveness of the Augmented Reality Application in Augusta Raurica Augmented Reality and Virtual Reality (pp. 99-111): Springer.Artstor. (2019). Artstor Digital Library. Retrieved April 30, 2019, from https://library.artstor.orgBay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF: Speeded Up Robust Features. Paper presented at the European Conference on Computer Vision, Berlin, Heidelberg.Beaudoin, J. E., & Brady, J. E. (2011). Finding visual information: a study of image resources used by archaeologists, architects, art historians, and artists. Art Documentation: Journal of the Art Libraries Society of North America, 30(2), 24-36.Beltrami, C., Cavezzali, D., Chiabrando, F., Iaccarino Idelson, A., Patrucco, G., & Rinaudo, F. (2019). 3D Digital and Physical Reconstruction of a Collapsed Dome using SFM Techniques from Historical Images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W11, 217-224. doi:10.5194/isprs-archives-XLII-2-W11-217-2019Bevilacqua, M. G., Caroti, G., Piemonte, A., & Ulivieri, D. (2019). Reconstruction of lost Architectural Volumes by Integration of Photogrammetry from Archive Imagery with 3-D Models of the Status Quo. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W9, 119-125. doi:10.5194/isprs-archives-XLII-2-W9-119-2019Bitelli, G., Dellapasqua, M., Girelli, V. A., Sbaraglia, S., & Tinia, M. A. (2017). Historical Photogrammetry and Terrestrial Laser Scanning for the 3d Virtual Reconstruction of Destroyed Structures: A Case Study in Italy. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5/W1, 113-119. doi:10.5194/isprs-archives-XLII-5-W1-113-2017Bruschke, J., Niebling, F., Maiwald, F., Friedrichs, K., Wacker, M., & Latoschik, M. E. (2017). Towards browsing repositories of spatially oriented historic photographic images in 3D web environments. Paper presented at the Proceedings of the 22nd International Conference on 3D Web Technology.Bruschke, J., Niebling, F., & Wacker, M. (2018). Visualization of Orientations of Spatial Historical Photographs. Paper presented at the Eurographics Workshop on Graphics and Cultural Heritage.Bruschke, J., & Wacker, M. (2014). Application of a Graph Database and Graphical User Interface for the CIDOC CRM. Paper presented at the Access and Understanding-Networking in the Digital Era. Session J1. The 2014 annual conference of CIDOC, the International Committee for Documentation of ICOM.Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology: John Wiley & Sons.Callieri, M., Cignoni, P., Corsini, M., & Scopigno, R. (2008). Masked photo blending: Mapping dense photographic data set on high-resolution sampled 3D models. Computers & Graphics, 32(4), 464-473.Chum, O., & Matas, J. (2005). Matching with PROSAC-progressive sample consensus. Paper presented at the Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on.Coordination and Support Action Virtual Multimodal Museum (ViMM). (2018). ViMM. Retrieved April 30, 2019, from https://www.vi-mm.eu/CultLab3D. (2019). CultLab3D. Retrieved April 30, 2019, from https://www.cultlab3d.deDeng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. Paper presented at the 2009 IEEE conference on computer vision and pattern recognition.Deutsches Archäologisches Institut (DAI). (2019). iDAI.objects arachne (Arachne). Retrieved April 30, 2019, from https://arachne.dainst.org/Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap: CRC press.Europeana. (2019). Europeana Collections. Retrieved 30.04.2019, from https://www.europeana.euEvens, T., & Hauttekeete, L. (2011). Challenges of digital preservation for cultural heritage institutions. Journal of Librarianship and Information Science, 43(3), 157-165.Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381-395.Fleming‐May, R. A., & Green, H. (2016). Digital innovations in poetry: Practices of creative writing faculty in online literary publishing. Journal of the Association for Information Science and Technology, 67(4), 859-873.Franken, T., Dellepiane, M., Ganovelli, F., Cignoni, P., Montani, C., & Scopigno, R. (2005). Minimizing user intervention in registering 2D images to 3D models. The visual computer, 21(8-10), 619-628.Girardi, G., von Schwerin, J., Richards-Rissetto, H., Remondino, F., & Agugiaro, G. (2013). The MayaArch3D project: A 3D WebGIS for analyzing ancient architecture and landscapes. Literary and Linguistic Computing, 28(4), 736-753. doi:10.1093/llc/fqt059Grussenmeyer, P., & Al Khalil, O. (2017). From Metric Image Archives to Point Cloud Reconstruction: Case Study of the Great Mosque of Aleppo in Syria. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W5, 295-301. doi:10.5194/isprs-archives-XLII-2-W5-295-2017Gutierrez, M., Vexo, F., & Thalmann, D. (2008). Stepping into virtual reality: Springer Science & Business Media.Guttentag, D. A. (2010). Virtual reality: Applications and implications for tourism. Tourism Management, 31(5), 637-651.Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision: Cambridge university press.Koutsoudis, A., Arnaoutoglou, F., Tsaouselis, A., Ioannakis, G., & Chamzas, C. (2015). Creating 3D Replicas of Medium-to Large-Scale Monuments for Web-Based Dissemination Within the Framework of the 3D-Icons Project. CAA2015, 971.Li, J., Hu, Q., & Ai, M. (2018). RIFT: Multi-modal Image Matching Based on Radiation-invariant Feature Transform. arXiv preprint arXiv:1804.09493.Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2), 91-110.Maietti, F., Di Giulio, R., Piaia, E., Medici, M., & Ferrari, F. (2018). Enhancing Heritage fruition through 3D semantic modelling and digital tools: the INCEPTION project. Paper presented at the IOP Conference Series: Materials Science and Engineering.Maiwald, F., Schneider, D., Henze, F., Münster, S., & Niebling, F. (2018). Feature Matching of Historical Images Based on Geometry of Quadrilaterals. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2, 643-650. doi:10.5194/isprs-archives-XLII-2-643-2018Maiwald, F., Vietze, T., Schneider, D., Henze, F., Münster, S., & Niebling, F. (2017). Photogrammetric analysis of historical image repositories for virtual reconstruction in the field of digital humanities. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 447.Matas, J., Chum, O., Urban, M., & Pajdla, T. (2004). Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing, 22(10), 761-767.Melero, F. J., Revelles, J., & Bellido, M. L. (2018). Atalaya3D: making universities' cultural heritage accessible through 3D technologies.Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: A class of displays on the reality-virtuality continuum. Paper presented at the Telemanipulator and telepresence technologies.Mishkin, D., Matas, J., & Perdoch, M. (2015). MODS: Fast and robust method for two-view matching. Computer Vision and Image Understanding, 141, 81-93.Moulon, P., Monasse, P., & Marlet, R. (2012). Adaptive structure from motion with a contrario model estimation. Paper presented at the Asian Conference on Computer Vision.Münster, S., Kamposiori, C., Friedrichs, K., & Kröber, C. (2018). Image libraries and their scholarly use in the field of art and architectural history. International journal on digital libraries, 19(4), 367-383.Niebling, F., Bruschke, J., & Latoschik, M. E. (2018). Browsing Spatial Photography for Dissemination of Cultural Heritage Research Results using Augmented Models.Niebling, F., Maiwald, F., Barthel, K., & Latoschik, M. E. (2017). 4D Augmented City Models, Photogrammetric Creation and Dissemination Digital Research and Education in Architectural Heritage (pp. 196-212). Cham: Springer International Publishing.Oliva, L. S., Mura, A., Betella, A., Pacheco, D., Martinez, E., & Verschure, P. (2015). Recovering the history of Bergen Belsen using an interactive 3D reconstruction in a mixed reality space the role of pre-knowledge on memory recollection. Paper presented at the 2015 Digital Heritage.Pani Paudel, D., Habed, A., Demonceaux, C., & Vasseur, P. (2015). Robust and optimal sum-of-squares-based point-to-plane registration of image sets and structured scenes. Paper presented at the Proceedings of the IEEE International Conference on Computer Vision.Ross, S., & Hedstrom, M. (2005). Preservation research and sustainable digital libraries. International journal on digital libraries, 5(4), 317-324.Schindler, G., & Dellaert, F. (2012). 4D Cities: Analyzing, Visualizing, and Interacting with Historical Urban Photo Collections. Journal of Multimedia, 7(2), 124-131.Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. Paper presented at the Proceedings of the IEEE International Conference on Computer Vision.Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.Slater, M., & Sanchez-Vives, M. V. (2016). Enhancing our lives with immersive virtual reality. Frontiers in Robotics and AI, 3, 74.Styliani, S., Fotis, L., Kostas, K., & Petros, P. (2009). Virtual museums, a survey and some issues for consideration. Journal of cultural Heritage, 10(4), 520-528.Tschirschwitz, F., Büyüksalih, G., Kersten, T., Kan, T., Enc, G., & Baskaraca, P. (2019). Virtualising an Ottoman Fortress - Laser Scanning and 3D Modelling for the Development of an Interactive, Immersive Virtual Reality Application. International archives of the photogrammetry, remote sensing and spatial information sciences, 42(2/W9).Web3D Consortium. (2019). Open Standards for Real-Time 3D Communication. Retrieved April 30, 2019, from http://www.web3d.org/Wu, C. (2013). Towards linear-time incremental structure from motion. Paper presented at the 3D Vision-3DV 2013, 2013 International conference on.Wu, Y., Ma, W., Gong, M., Su, L., & Jiao, L. (2015). A Novel Point-Matching Algorithm Based on Fast Sample Consensus for Image Registration. IEEE Geosci. Remote Sensing Lett., 12(1), 43-47.Yoon, J., & Chung, E. (2011). Understanding image needs in daily life by analyzing questions in a social Q&A site. Journal of the American Society for Information Science and Technology, 62(11), 2201-2213

    Application of mixed and virtual reality in geoscience and engineering geology

    Get PDF
    Visual learning and efficient communication in mining and geotechnical practices is crucial, yet often challenging. With the advancement of Virtual Reality (VR) and Mixed Reality (MR) a new era of geovisualization has emerged. This thesis demonstrates the capabilities of a virtual continuum approach using varying scales of geoscience applications. An application that aids analyses of small-scale geological investigation was constructed using a 3D holographic drill core model. A virtual core logger was also developed to assist logging in the field and subsequent communication by visualizing the core in a complementary holographic environment. Enriched logging practices enhance interpretation with potential economic and safety benefits to mining and geotechnical infrastructure projects. A mine-scale model of the LKAB mine in Sweden was developed to improve communication on mining induced subsidence between geologists, engineers and the public. GPS, InSAR and micro-seismicity data were hosted in a single database, which was geovisualized through Virtual and Mixed Reality. The wide array of applications presented in this thesis illustrate the potential of Mixed and Virtual Reality and improvements gained on current conventional geological and geotechnical data collection, interpretation and communication at all scales from the micro- (e.g. thin section) to the macro- scale (e.g. mine)

    VR WebGIS: an OpenSource approach to 3D real-time landscape management

    Get PDF
    OpenSource philosophy has reached to unexpected goals. The diffusion of OpenSource tools is increased quite a lot, but also the quality of the tools is improving. Their usability is slowing going even towards communities not exactly skilled in advanced programming. Open movement is penetrated in many sectors, often subverting, thank to its social impact, the traditional rules of companies and research institutions, pulling down sometimes hierarchies and pushing on innovative ideas because of their validity and values. [...]Peer Reviewe

    Integrating virtual reality and gis tools for geological mapping, data collection and analysis: An example from the metaxa mine, santorini (Greece)

    Get PDF
    In the present work we highlight the effectiveness of integrating different techniques and tools for better surveying, mapping and collecting data in volcanic areas. We use an Immersive Virtual Reality (IVR) approach for data collection, integrated with Geographic Information System (GIS) analysis in a well-known volcanological site in Santorini (Metaxa mine), a site where volcanic processes influenced the island’s industrial development, especially with regard to pumice mining. Specifically, we have focused on: (i) three-dimensional (3D) high-resolution IVR scenario building, based on Structure from Motion photogrammetry (SfM) modeling; (ii) subsequent geological survey, mapping and data collection using IVR; (iii) data analysis, e.g., calculation of extracted volumes, as well as production of new maps in a GIS environment using input data directly from the IVR survey; and finally, (iv) presentation of new outcomes that highlight the importance of the Metaxa Mine as a key geological and volcanological geosite

    Integrating virtual reality and GIS tools for geological mapping, data collection and analysis: an example from Metaxa Mine, Santorini (Greece)

    Get PDF
    In the present work we highlight the effectiveness of integrating different techniques and tools for better surveying, mapping and collecting data in volcanic areas. We use an Immersive Virtual Reality (IVR) approach for data collection, integrated with Geographic Information System (GIS) analysis in a well-known volcanological site in Santorini (Metaxa mine), a site where volcanic processes influenced the island’s industrial development, especially with regard to pumice mining. Specifically, we have focused on: (i) three-dimensional (3D) high-resolution IVR scenario building, based on Structure from Motion photogrammetry (SfM) modeling; (ii) subsequent geological survey, mapping and data collection using IVR; (iii) data analysis, e.g., calculation of extracted volumes, as well as production of new maps in a GIS environment using input data directly from the IVR survey; and finally, (iv) presentation of new outcomes that highlight the importance of the Metaxa Mine as a key geological and volcanological geosite

    4D Reconstruction and Visualization of Cultural Heritage: Analysing our Legacy Through Time

    Get PDF
    Temporal analyses and multi-temporal 3D reconstruction are fundamental for the preservation and maintenance of all forms of Cultural Heritage (CH) and are the basis for decisions related to interventions and promotion. Introducing the fourth dimension of time into three-dimensional geometric modelling of real data allows the creation of a multi-temporal representation of a site. In this way, scholars from various disciplines (surveyors, geologists, archaeologists, architects, philologists, etc.) are provided with a new set of tools and working methods to support the study of the evolution of heritage sites, both to develop hypotheses about the past and to model likely future developments. The capacity to “see” the dynamic evolution of CH assets across different spatial scales (e.g. building, site, city or territory) compressed in diachronic model, affords the possibility to better understand the present status of CH according to its history. However, there are numerous challenges in order to carry out 4D modelling and the requisite multi-data source integration. It is necessary to identify the specifications, needs and requirements of the CH community to understand the required levels of 4D model information. In this way, it is possible to determine the optimum material and technologies to be utilised at different CH scales, as well as the data management and visualization requirements. This manuscript aims to provide a comprehensive approach for CH time-varying representations, analysis and visualization across different working scales and environments: rural landscape, urban landscape and architectural scales. Within this aim, the different available metric data sources are systemized and evaluated in terms of their suitability

    Geoinformatics for the conservation and promotion of cultural heritage in support of the UN Sustainable Development Goals

    Get PDF
    Cultural Heritage (CH) is recognised as being of historical, social, and anthropological value and is considered as an enabler of sustainable development. As a result, it is included in the United Nations' Sustainable Development Goals (SDGs) 11 and 8. SDG 11.4 emphasises the protection and safeguarding of heritage, and SDG 8.9 aims to promote sustainable tourism that creates jobs and promotes local culture and products. This paper briefly reviews the geoinformatics technologies of photogrammetry, remote sensing, and spatial information science and their application to CH. Detailed aspects of CH-related SDGs, comprising protection and safeguarding, as well as the promotion of sustainable tourism are outlined. Contributions of geoinformatics technologies to each of these aspects are then identified and analysed. Case studies in both developing and developed countries, supported by funding directed at the UN SDGs, are presented to illustrate the challenges and opportunities of geoinformatics to enhance CH protection and to promote sustainable tourism. The potential and impact of geoinformatics for the measurement of official SDG indicators, as well as UNESCO's Culture for Development Indicators, are discussed. Based on analysis of the review and the presented case studies, it is concluded that the contribution of geoinformatics to the achievement of CH SDGs is necessary, significant and evident. Moreover, following the UNESCO initiative to introduce CH into the sustainable development agenda and related ICOMOS action plan, the concept of Sustainable Cultural Heritage is defined, reflecting the significance of CH to the United Nations' ambition to "transform our world"

    Virtual Reality and Oceanography: Overview, Applications, and Perspective

    Get PDF
    With the ongoing, exponential increase in ocean data from autonomous platforms, satellites, models, and in particular, the growing field of quantitative imaging, there arises a need for scalable and cost-efficient visualization tools to interpret these large volumes of data. With the recent proliferation of consumer grade head-mounted displays, the emerging field of virtual reality (VR) has demonstrated its benefit in numerous disciplines, ranging from medicine to archeology. However, these benefits have not received as much attention in the ocean sciences. Here, we summarize some of the ways that virtual reality has been applied to this field. We highlight a few examples in which we (the authors) demonstrate the utility of VR as a tool for ocean scientists. For oceanic datasets that are well-suited for three-dimensional visualization, virtual reality has the potential to enhance the practice of ocean science

    Enabling the Development and Implementation of Digital Twins : Proceedings of the 20th International Conference on Construction Applications of Virtual Reality

    Get PDF
    Welcome to the 20th International Conference on Construction Applications of Virtual Reality (CONVR 2020). This year we are meeting on-line due to the current Coronavirus pandemic. The overarching theme for CONVR2020 is "Enabling the development and implementation of Digital Twins". CONVR is one of the world-leading conferences in the areas of virtual reality, augmented reality and building information modelling. Each year, more than 100 participants from all around the globe meet to discuss and exchange the latest developments and applications of virtual technologies in the architectural, engineering, construction and operation industry (AECO). The conference is also known for having a unique blend of participants from both academia and industry. This year, with all the difficulties of replicating a real face to face meetings, we are carefully planning the conference to ensure that all participants have a perfect experience. We have a group of leading keynote speakers from industry and academia who are covering up to date hot topics and are enthusiastic and keen to share their knowledge with you. CONVR participants are very loyal to the conference and have attended most of the editions over the last eighteen editions. This year we are welcoming numerous first timers and we aim to help them make the most of the conference by introducing them to other participants
    corecore