473 research outputs found

    MOD-0A 200 kW wind turbine generator design and analysis report

    Get PDF
    The design, analysis, and initial performance of the MOD-OA 200 kW wind turbine generator at Clayton, NM is documented. The MOD-OA was designed and built to obtain operation and performance data and experience in utility environments. The project requirements, approach, system description, design requirements, design, analysis, system tests, installation, safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the wind turbine are discussed. The design and analysis of the rotor, drive train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electricl system, and control systems are presented. The rotor includes the blades, hub, and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control are discussed. Systems analyses on dynamic loads and fatigue are presented

    PNNL Hoisting and Rigging Manual

    Full text link

    Design of an autonomous Lunar construction utility vehicle

    Get PDF
    In order to prepare a site for a manned lunar base, an autonomously operated construction vehicle is necessary. A Lunar Construction Utility Vehicle (LCUV), which utilizes interchangeable construction implements, was designed conceptually. Some elements of the machine were studied in greater detail. Design of an elastic loop track system has advanced to the testing stage. A standard coupling device was designed to insure a proper connection between the different construction tools and the LCUV. Autonomous control of the track drive motors was simulated successfully through the use of a joystick and computer interface. A study of hydrogen-oxygen fuel cells has produced estimates of reactant and product size requirements and identified multi-layer insulation techniques. Research on a 100 kW heat rejection system has determined that it is necessary to house a radiator panel on a utility trailer. The impact of a 720 hr use cycle has produced a very large logistical support lien which requires further study

    Large Wind Energy Converter: Growian 3 MW

    Get PDF
    The final report on the projected application of larger-scale wind turbine on the northern German coast is summarized. The designs of the tower, machinery housing, rotor, and rotor blades are described accompanied various construction materials are examined. Rotor blade adjustment devices auxiliary and accessory equipment are examined

    Hoisting and Rigging (Formerly Hoisting and Rigging Manual)

    Full text link

    Safety and Mission Assurance Acronyms, Abbreviations, and Definitions

    Get PDF
    This NASA Technical Handbook compiles into a single volume safety, reliability, maintainability, and quality assurance and risk management terms defined and used in NASA safety and mission assurance directives and standards. The purpose of this handbook is to support effective communication within NASA and with its contractors. The definitions in this handbook are updated when the definition of the acronym or term is updated in the originating document

    Integrated sensing, dynamics and control of a moble gantry crane

    Get PDF
    This thesis investigates the dynamics and control of a Rubber Tyred Gantry (RTG) crane which is commonly used in container handling operations. Both theoretical and experimental work has been undertaken to ensure the balance of this research. The concept of a Global Sensing System (GSS) is outlined, this being a closed loop automatic sensing system capable of guiding the lifting gear (spreader) to the location of the target container by using feedback signals from the crane's degrees of freedom. To acquire the crucial data for the coordinates and orientation of the swinging spreader a novel visual sensing system (VSS) is proposed. In addition algorithms used in the VSS for seeking the central coordinates of the clustered pixels from the digitised images are also developed. In order to investigate the feasibility of different control strategies in practice, a scaleddown, 1/8 full size, experimental crane rig has been constructed with a new level of functionality in that the spreader in this rig is equipped with multiple cables to emulate the characteristics of a full-size RTG crane. A Crane Application Programming Interface (CAPI) is proposed to reduce the complexity and difficulty in integrating the control software and hardware. It provides a relatively user-friendly environment in which the end-user can focus on implementing the more fundamental issues of control strategies, rather than spending significant amounts of time in low-level devicedependent programming. A control strategy using Feedback Linearization Control (FLC) is investigated. This can handle significant non-linearity in the dynamics of the RTG crane. Simulation results are provided, and so by means of the CAPI this controller is available for direct control of the experimental crane rig. The final part of the thesis is an integration of the analyses of the different subjects, and shows the feasibility of real-time implementation

    Implementation of the 64-meter-diameter Antennas at the Deep Space Stations in Australia and Spain

    Get PDF
    The management and construction aspects of the Overseas 64-m Antenna Project in which two 64-m antennas were constructed at the Tidbinbilla Deep Space Communications Complex in Australia, and at the Madrid Deep Space Communications Complex in Spain are described. With the completion of these antennas the Deep Space Network is equipped with three 64-m antennas spaced around the world to maintain continuous coverage of spacecraft operations. These antennas provide approximately a 7-db gain over the capabilities of the existing 26-m antenna nets. The report outlines the project organization and management, resource utilization, fabrication, quality assurance, and construction methods by which the project was successfully completed. Major problems and their solutions are described as well as recommendations for future projects

    Assured crew return vehicle post landing configuration design and test

    Get PDF
    The 1991-1992 senior Mechanical and Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle (ACRV) and the Emergency Egress Couch (EEC). The ACRV will be permanently docked to Space Station Freedom fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard Space Station Freedom. The EEC provides medical support and a transportation surface for an incapacitated crew member. The objective of the projects was to give the ACRV Project Office data to feed into their feasibility studies. Four design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined efforts to design a one-fifth scale model for the Apollo Command Module derivative, an on-board flotation system, and a lift attachment point system. This model was designed to test the feasibility of a rigid flotation and stabilization system and to determine the dynamics associated with lifting the vehicle during retrieval. However, due to priorities, it was not built. Group three designed a one-fifth scale model of the Johnson Space Center (JSC) benchmark configuration, the Station Crew Return Alternative Module (SCRAM) with a lift attachment point system. This model helped to determine the flotation and lifting characteristics of the SCRAM configuration. Group four designed a full scale EEC with changeable geometric and geometric and dynamic characteristics. This model provided data on the geometric characteristics of the EEC and on the placement of the CG and moment of inertia. It also gave the helicopter rescue personnel direct input to the feasibility study. Section 1 describes in detail the design of a one-fifth scale model of the Apollo Command Module Derivative (ACMD) ACRV. The objective of the ACMD Configuration Model Team was to use geometric and dynamic constraints to design a one-fifth scale working model of the Apollo Command Module Derivative (ACMD) configuration with a Lift Attachment Point (LAP) System. This model was required to incorporate a rigidly mounted flotation system and the egress system designed the previous academic year. The LAP system was to be used to determine the dynamic effects of locating the lifting points at different locations on the vehicle. The team was then to build and test the model; however, due to priorities, this did not occur. To better simulate the ACMD after a water landing, the nose cone section was removed and the deck area exposed. The areas researched during the design process were construction, center of gravity and moment of inertia, and lift attachment points
    • …
    corecore